

SQL

COMMAND

ANALYSIS

User's

Guide

Software
Product
Research

SQL Command Analysis
Release 3.4

© Copyright Software Product Research 1996 - 2000

All product names, mentioned in this manual, are trademarks of their respective owners.

Using this manual
. 1

1 Getting started . 3
1.1 Invoking the SQL/Command Analysis Menu . 3
1.2 Invoking SQL/Command Analysis from a CMS filelist . 3
1.3 Invoking SQL/Command Analysis from an XEDIT session . 3
1.4 Specifying analysis options . 4
1.5 Viewing the analysis report . 5
1.6 Examining the analysis report . 6

2 Functional description . 7
2.1 Command extraction . 8
2.2 SQL EXPLAIN . 8

2.2.1 Command text . 8
2.2.2 Command Cost . 8
2.2.3 Command Structure . 9
2.2.4 Command Plans . 9
2.2.5 Command Reference . 9
2.2.6 Explain Warnings . 10

2.3 Text analysis . 11
2.4 Object lists . 13
2.5 Object notes . 14
2.6 Analysis summary . 14
2.7 User interface . 14
2.8 SQL/CA help . 14
2.9 Additional processing options . 15

2.9.1 Archiving Analyzed Commands and Results . 15
2.9.2 Editing the Analysis Report . 16
2.9.3 Printing the Analysis Report . 16
2.9.4 Saving the Analysis Report . 16
2.9.5 Updating Statistics before analysis . 17
2.9.6 Command Analysis in server mode . 18
2.9.7 Copying the Analysis Report for another user . 19
2.9.8 Copying the Source Extract for another user . 19
2.9.9 Connecting a DB2 database or userid . 19

2.10 Simulation facilities during analysis . 20
2.11 Automated table statistics . 21
2.12 DB2 program monitoring . 21
2.13 DB2 data modelling facility . 22
2.14 SQL/CA software prerequisites . 23

3 SQL/CA INSTALLATION . 25
3.1 Installing the CMS product material . 25

3.1.1 Prerequisites . 25
3.1.2 Installation . 25
3.1.3 Linking the SQL/CA Modules . 25
3.1.4 Customizing the SQL/CA Default Processing Options . 26

3.2 DB2/VM related installation . 27
3.2.1 Prerequisites . 27
3.2.2 Installation . 28

3.3 VM/CSP considerations . 30
3.4 VSE/CSP considerations . 31
3.5 NATURAL considerations . 32
3.6 SQL/CA size estimates . 33

3.6.1 CMS Minidisk or directory Requirements . 33
3.6.2 DYNPRG DBspace Size . 33
3.6.3 ARCHIVE DBspace Size . 33
3.6.4 PROCESS CONTROL DBspace Size . 34

3.7 Granting SQL/CA related privileges . 35
3.7.1 Grant RUN privilege on SQL/CA . 35
3.7.2 Granting SQLCABAS . 36
3.7.3 Grant SELECT Privilege on SQL/CA Archive Tables . 36

3.8 Installing an SQL/CA Server . 37
3.9 SQL/CA SERVER User exit . 38
3.10 EXPLAIN table usage by SQL/CA . 39
3.11 ALIAS USERNAMES . 40

3.11.1 Functional Description . 40
3.11.2 Defining an alias . 40

4 Using SQL/CA . 41
4.1 Prerequisites . 41
4.2 SQL/CA - SQL/MF integration . 41
4.3 Using the SQL/CA command menu . 42

4.3.1 CMS source program analysis . 43
4.3.1.1 Program name to analyze . 45
4.3.1.2 Additional processing options . 46
4.3.2 CSP application analysis . 49
4.3.2.1 CSP application name . 49
4.3.2.2 CSP invocation EXEC name . 49
4.3.2.3 Additional processing options . 49
4.3.3 REXX/SQL program analysis . 50
4.3.3.1 RXSQL filename . 50
4.3.3.2 Additional processing options . 50
4.3.4 NATURAL application analysis . 51
4.3.4.1 NATURAL filename . 51
4.3.4.2 Additional processing options . 51
4.3.4.3 Technical Notes . 52
4.3.5 SQL query analysis . 53
4.3.5.1 Name of the query processor . 53
4.3.5.2 Name of the query owner . 53
4.3.5.3 Name of the query . 53
4.3.5.4 Connect parameters . 53
4.3.6 Package analysis . 54
4.3.6.1 Package name to analyze . 54
4.3.6.2 Additional processing options . 54
4.3.7 Interactive command analysis . 56
4.3.8 Table oriented analysis . 57
4.3.9 Editing the analysis report . 58
4.3.10 Summarizing the analysis report . 59
4.3.11 Printing the analysis report . 60
4.3.12 Waiting on analysis reports in server mode . 61
4.3.13 Query the SQL/CA archive tables . 62
4.3.13.1 Query by Command Cost . 64
4.3.13.2 Query by Access Type . 65
4.3.13.3 Query by Access Method . 66
4.3.13.4 Query by SQL/CA Warning . 67
4.3.13.5 Query by SQL Command Code . 69
4.3.13.6 Query by Subqueries . 70
4.3.13.7 Query by Response Size . 71
4.3.13.8 Query by Command Object Names . 72
4.3.13.9 Query by Application name . 73
4.3.14 SQL/CA utility menu . 74
4.3.15 Print the SQL/CA glossary . 74
4.3.16 Edit the SQL/CA glossary . 74
4.3.17 Create the DB2 EXPLAIN tables . 75
4.3.18 Import an archived query . 75
4.3.19 Connect another database . 75

4.4 Invoking command analysis at the CMS prompt . 76

4.4.1 Program Command Analysis . 76
4.4.2 Analysis Report Editing . 76

4.5 Invoking command analysis from XEDIT . 77
4.6 Using the SQLCA command on a CMS filelist . 78

4.6.1 Program Command Analysis . 78
4.6.2 Analysis Report Editing . 78

4.7 Using the SQLCAX EXEC . 79
4.8 Using the SQLCAGPA utility . 82
4.9 Stopping the SQL/CA server . 83
4.10 VM/CSP considerations . 84
4.11 VSE/CSP considerations . 85
4.12 NATURAL considerations . 86

5 Interpreting the analysis report . 87
5.1 Command Execution Structure by block and parent . 87
5.2 Structure of Referential Constraint Commands . 87
5.3 Command Cost Summary . 88
5.4 Command Plan Summary . 90
5.5 Command Execution Structure . 91
5.6 Command Execution Detail . 92

5.6.1 Plan Detail . 92
5.6.2 Column Reference Details . 98
5.6.3 Column Reference Details (DB2 versions before 3.4) . 100

5.7 Predicate Analysis Warnings . 102

6 SQL/CA batch facility . 103

7 Analysis requests issued from non-VM environments . 105

8 SQL/CA program monitoring facility . 107

9 SQL/CA automatic table statistics facility . 109
9.1 Comment statement . 110
9.2 CONNECT statement . 111
9.3 STATISTICS statement . 112
9.4 TABLES statement . 115
9.5 DBSPACE statement . 116
9.6 MONITOR statement . 117
9.7 VM or CMS command . 118
9.8 Sample SQLCABAS Control File . 119
9.9 Sample Auto-statistics Exit . 120

10 SQL/CA data modelling facility . 121
10.1 Obtain catalog statistics from source system . 122
10.2 Modifying catalog statistics on the extract file . 124
10.3 Install catalog statistics in target system . 126
10.4 Running the SQLXDMF TRANSFER function . 127
10.5 Running SQLXDMF in non-interactive mode . 128

11 SQL/CA system processing OPTIONS file . 129

12 SQL/CA Glossary . 133

13 SQL/CA archive tables . 145

14 SQL/CA analysis warning messages . 149

15 SQL/CA object notes . 183

16 Predicate evaluation tables . 185

16.1 Datatype evaluation table . 185
16.2 Decimal precision evaluation table . 185
16.3 Predicate operator evaluation table . 186
16.4 Default filter factor table . 187

17 EXPLAIN tables usage by SQL/CA . 189

18 EXPLAIN performance . 191

19 Alias usernames . 193
19.1 Functional Description . 193
19.2 Defining an alias . 193

20 Migrating to SQL/DS Version 3 Release 4 . 195

21 Dynamic SQL/CA packages . 197

22 SQL/CA messages . 199

23 SQL/CA sample analysis report . 203

Page viii SQL Command Analysis

SQL Command Analysis Page 1

Using this manual

Getting started

Page 3 and following explain shortly how to use SQL/Command Analysis.

Functional Description

Turn to page 7 for a full description of SQL/Command Analysis.

Using SQL/CA

For complete information on SQL/Command Analysis usage, read page 41 and following.

Interpreting the analysis report

Page 87 and following give a detailed description of the command analysis report and its clauses.

Glossary

The glossary explains DB2/VM related terminology. See page 133 and following.

Warning messages

Go to page 149 for a full explanation of the warning messages found in the analysis report.

Page 2 SQL Command Analysis

SQL Command Analysis Page 3

1 Getting started

1.1 Invoking the SQL/Command Analysis Menu

Type SQLCA on the CMS prompt. You get the following menu screen.

SQL Command Analysis Menu

1 Analyze CMS Source Program
2 Analyze CSP Application
3 Analyze REXX Application
4 Analyze NATURAL Application
5 Analyze Stored SQL Query
6 Analyze SQL Package
7 Interactive Command Analysis
8 Table Oriented Analysis
9 Query Analysis Archive
10 SQL/CA Utilities Menu

Select Menu Option

Choose the desired option, for example 1 if you are going to analyze a source program. Proceed with
Specifying Analysis Options on page 4.

1.2 Invoking SQL/Command Analysis from a CMS filelist

When you have a CMS filelist displayed on your screen, type SQLCA on the line for the source file
that you want to analyze. Proceed with Specifying Analysis Options on page 4.

1.3 Invoking SQL/Command Analysis from an XEDIT session

When you are in an XEDIT session and you want to analyze the program you are editing, type
SQLCAP on the XEDIT command line. Proceed with Specifying Analysis Options on page 4.

Page 4 SQL Command Analysis

1.4 Specifying analysis options

Command analysis options are specified on the following screen:

 Analyze CMS Source Program

 Program name to analyze : A1
 Archive analysis results : YES
 Edit analysis report : YES
 Print analysis report : NO
 Uppercase print : NO
 Save previous analysis report : NO
 Update statistics before analysis : FIRST
 Update statistics for all columns : NO
 Delayed analysis by userid :
 Copy analysis report to userid :
 Copy source extract to userid :
 Connect to database :
 as SQL user :
 with password :

When analyzing a CMS source file, type its name (for example TEST2 COBOL). When analyzing
CSP applications, QMF queries or packages, type the corresponding name. When you invoked
analysis from a CMS Filelist or from XEDIT, the name of the source file will already be on the
screen.

The remaining screen fields define execution options. Initially, they contain the system defaults,
defined when SQL/CA was installed. Overtype them if necessary. For an in-depth description of the
execution options, please refer to page 46.

Press ENTER to start the analysis.

SQL Command Analysis Page 5

1.5 Viewing the analysis report

When analysis is complete, the analysis report is displayed on the terminal, using XEDIT. Initially,
you see the last page of the report, the analysis summary.

ANALYSIS SUMMARY

 Highest command cost : 1169
 DBspace scans : 1
Non-selective index scans : 4
 Average access score : 2.8
 Severity 3 warnings : 10
 Severity 2 warnings : 5
 Severity 1 warnings : 8

Use XEDIT commands to browse the report or to search for words or phrases. For example: type the
TOP command to view the first page of the analysis report.

Cust : CATEST
File : SQLCADMO PLIOPT A1 Line nr 2 User=SQLAF
Date : 94/04/19 16:10:55 ArchQno = 501 Dbase=CATEST

 COMMAND EXECUTION STRUCTURE BY BLOCK AND PARENT
 BLK Par Command Text

 1 0 SELECT * FROM SQLDBA.INVENTORY FOR UPDATE OF PARTNO,DESCRIPTION,
 QONHAND

 COMMAND COST SUMMARY
 Total Command Cost : 18 (ISQL like Cost : 1)

 COMMAND EXECUTION STRUCTURE

 Estimated number of rows SELECTed : 22 out of 22
 Estimated global command filter factor : 1
 >>> AW86 Estimated times predicate conditions satisfied : 22

 COMMAND EXECUTION DETAIL

 Plan : 1
 >>> AW80 Access : Scan of DBspace SAMPLE
 DBspace pages scanned : 8
 DBspace scan productivity : 13%

1 Glossary 2 -> Warning 3 Quit 4 <- Command 5 <- CmdBlock
6 ->> Warning 7 PageUp 8 PageDown 9 Detail 10 -> Command

Page 6 SQL Command Analysis

1.6 Examining the analysis report

In addition to the usual XEDIT commands, you can use a number of PF-keys to speed up your work.
This is a list of those keys, with their meaning.

PF1 Displays the SQL/CA glossary. The glossary is an online book, that contains the following
sections of this manual:

- INTERPRETING THE ANALYSIS REPORT
- SQL/CA GLOSSARY
- SQL/CA WARNING MESSAGES
- SQL/CA OBJECT NOTES
- SQL/CA MESSAGES

If the cursor is located on an analysis warning message when you press PF1, the glossary is
automatically positioned to the description of the warning in the "Warning Messages"
section. (A warning message line starts with one or more > signs and usually has a message
number in the form AWxx). The glossary too is displayed using XEDIT. You can use
XEDIT commands to browse the book or to search for specific items.

PF2 Locates the next analysis warning on the current page.

PF3 Quits the report editor.

PF4 Locates the begin of the current SQL command being analyzed.

PF5 Locates the begin of the current SQL subquery, if the command contains subqueries.

PF6 Locates the next analysis warning on the following page.

PF7 Displays the previous report page.

PF8 Displays the next report page.

PF9 Switches to condensed or non-condensed report format, in a flip-flop manner.

A condensed report shows the SQL commands and the generated warnings only. A non-
condensed report shows the entire report. You might choose to start with condensed mode,
so that you have all warnings for a command on the same screen. If you want to see the
analysis for that command in detail, you can switch to the non-condensed format.

Note that your last format choice is remembered by SQL/CA across sessions. It will be used
automatically when you display your next report.

PF10 Locates the next SQL command in the report.

SQL Command Analysis Page 7

 Support is provided for both the traditional RXSQL and the newer EXECSQL interface.1

2 Functional description

SQL Command Analysis (‘SQL/CA’) is a software tool for DB2/VM (previously known as SQL/DS).

Its primary purpose is to assist SQL programmers in producing efficient and well performing SQL
applications, by providing analysis services during program development. SQL/CA encourages SQL
developers to systematically analyze their applications in view of optimal SQL coding. This approach
will detect poorly designed SQL at an early stage and prevent many performance problems, that
otherwise would appear only when the program is moved into production.

SQL/CA examines the source text of the program, and therefore is able to signal SQL performance
deviations that cannot be detected by means of the traditional DB2 tuning procedures.

SQL/CA presents its findings in the form of an analysis report. The report is easy to read: it does not
require a highly technical background to be understood.

SQL/CA operates in the VM/CMS environment and is capable of analysing:

- Assembler, Cobol, Fortran or PL/1 source programs, residing on a CMS minidisk
- CSP applications residing in a CSP MSL
- REXX/SQL applications 1

- NATURAL applications
- EASYTRIEVE applications
- ISQL routines and QMF procedures
- CMS files containing SQL commands in DB2 Database Services format
- Any program text file forwarded to the SQL/CA analysis server
- Designated DB2 packages in the currently connected database
- DB2 packages that contain references to a designated table or view.

Except when analyzing DB2 packages, SQL/CA operates on the text of the source program. DB2
packages are not referenced during command analysis: application programs need not to be prepped in
order to be analyzed. However, the SQL commands must have correct syntax and the DB2 objects (tables
etc.) used by the application, must exist in the database connected during analysis.

During analysis, some simulation facilities are provided, for example, to create an index and observe its
effects on access path selection.

Although SQL/CA is designed for DB2/VM and executes in the CMS environment, it may also be helpful
for VSE users, provided that:

- the source programs are available as CMS files or in a CMS CSP/MSL
- the VSE system accesses a DB2/VM database through IBM's "Guest Sharing" facility.

Page 8 SQL Command Analysis

 See SQL/MF Integration on page 41.2

When analyzing a program, SQL/CA extracts the SQL commands, invokes DB2 EXPLAIN and performs
text analysis.

2.1 Command extraction

All SQL commands that can be explained and the related host variable specifications are extracted
from the program source text or from the unloaded DB2 package and stored into an extract file. SQL
commands that can be explained are: SELECT, INSERT, UPDATE, DELETE and DECLARE
CURSOR FOR SELECT | INSERT.

2.2 SQL EXPLAIN

The SQL EXPLAIN command is issued for all the extracted SQL commands and the resulting SQL
explain table data are converted from their encoded and numeric format into a textual and easily
readable analysis report. This report is stored on the user's A-disk as a CMS file with filetype
"SQLCA" and with a filename identical to the filename of the analyzed source.

For each SQL command, the analysis report provides following data obtained from the SQL Explain
tables:

2.2.1 Command text

Prints the SQL command in a manner that reflects the logical execution tree structure. If the
command contains subqueries, they are formatted by command block and calling block. The
indention level used when printing a given subquery, corresponds to the nesting level of the
query within the logical execution tree.

2.2.2 Command Cost

Reports the cost of command execution, as estimated by DB2. If the command consists of
multiple queries, a number of calculations are carried out in the Cost paragraph, in order to show
the cost associated with each subquery, taking into account its execution characteristics within
the logical execution tree. SQL/CA will also indicate the subquery with the highest cost. If our
SQL/MF monitor program product has been installed and if the user has access to the monitor2

tables during analysis, certain real-time execution statistics will be included in the report.

SQL Command Analysis Page 9

2.2.3 Command Structure

Reports:
- from which query block a dependent block is called, if the command contains embedded

queries
- the estimated number of rows processed
- the estimated number of execution iterations

If the command consists of multiple queries, the Structure paragraph will compute the
projected execution properties of each subquery, taking into account the execution properties
of all its logical predecessors within the execution tree.

2.2.4 Command Plans

Reports:
- whether the command is executed

- by DBspace scan
- by index-only scan
- by fully-qualified index scan
- by selective or non-selective index scan
- by view materialization

- the name of the plan index, if any
- the number of matching index-key columns
- the join method if the command implies joining
- the number of rows in the inner and outer join table
- whether sort operations will be performed

If the command is executed by DBspace scan, the Plan paragraph will compute the DBspace scan
productivity as the estimated percentage of table data accessed during the relational scan. If
indexed access is used, the column definitions of the index and its characteristics (first or not,
clustered or not, unique or not) are shown.

2.2.5 Command Reference

Reports:
- the column names appearing in the WHERE or UPDATE SET clauses
- the selectivity (filter factor) of those columns
- the columns appearing in a sargable predicate
- the columns used during a join
- the columns used for ORDER or GROUP BY
- the columns updated by the command

The Reference paragraph shows the explain column numbers as names. If a view is being
explained, the base table name and column names from explain are related to the corresponding
viewname and view column names, as used in the application.

Page 10 SQL Command Analysis

 If the original command is a SELECT *, the * is not expanded, due to the maximal command length3

restrictions.

2.2.6 Explain Warnings

In addition, an SQL command will be flagged with the warning character > and a warning
message code:

- if it is executed by DBspace scan
- if it is executed by a non-selective index scan
- if data pages must be accessed to resolve the predicate conditions
- if no indexes exist for the table
- if no highly clustered indexes or unique indexes exist for the table
- if no indexes exist created using the current DB2 release
- if view materialization occurs (DB2 Version 3 only)
- if all rows of the table are being accessed
- if a subquery is executed at each invocation of its parent block
- if the outer join table is larger than the inner join table

A severity code 1, 2 or 3 is associated with each of the warnings and printed as 1, 2 or 3 > signs.
The highest severity code 3 is assigned to conditions that are assumed to increase database I/O
during command execution.

Note

If the command contains view references, SQL EXPLAIN operates using the underlying real tables.
Therefore, SQL/CA expands such commands by inserting the view definition(s) until the resulting
command contains real table references only. The original and the expanded commands are printed and
the expanded command is used for SQL/CA text analysis.3

SQL Command Analysis Page 11

2.3 Text analysis

SQL/CA text analysis examines the application program for adherence to the SQL coding and
performance rules described in the IBM "performance tuning" manuals and detects command
specifications that lead to suboptimal performance. Text analysis will specifically warn the following
performance exposures:

- Indexing columns are being updated by the command.

- Table indexes do exist, but the command predicate does not contain index column references.

- Table indexes do exist, but the command predicate contains incomplete index column references,
that is, one or more indexing columns are not specified for the plan index (the index that is
effectively used during execution).

- The predicate uses indexing columns in expressions such as "BALANCE*2 > 1000". This may
disqualify index use.

- The datatype compatibility rules are violated in a combination of two syntactical elements. For
example: the datatype of a host variable is not compatible with the datatype of the corresponding
table column. See “Datatype evaluation table” on page 185. Moreover, when the column is
DECIMAL and the host variable DECIMAL, INTEGER or SMALLINT, the scale compatibility
rules must be observed, as described on page 185.

- The data length compatibility rules are being violated for non-decimal columns. The lengths of
the syntactical elements A and B are considered compatible when length(A) >= length(B), except
for VARCHAR columns with length < 254 and VARGRAPHIC columns with length < 127,
which are compatible with all character values, fixed or variable of any length.

- The data precision compatibility rules are being violated for decimal columns. The precisions of
the decimal elements A and B are considered compatible when precision(A) >= precision(B).

- The data scale compatibility rules are being violated for decimal columns. The scales of the
decimal elements A and B are considered compatible when scale(A) = scale(B) when B is not a
constant. When B is a constant the compatibility rule is scale(A) >= scale(B).

- SQL predicate operators used in the command are no index keymatching candidates, that means,
the key values cannot be used to directly fetch an index entry. For instance: an = operator is key-
matching, a ¬ = operator is not. For a complete list of index keymatching operators, see the table
on page 186.

- The command predicate specifications are not "sargable", that is, they cause the predicate to be
evaluated by RDS (the DB2 Relational Data System) and not by DBSS (the DB2 Database
Subsystem). This involves additional CPU time consumption. A number of command operators
is not sargable. For a list of them, see the table on page 186.

Page 12 SQL Command Analysis

- The predicate is not sargable because an indicator variable is used with a host variable in an
EQUALS predicate for a column that does not permit nulls.

- The left and right hand expressions of the predicate refer to columns of the same table
(T1.COL1=T1.COL2). Such predicates are not sargable and not keymatching.

- The command contains suboptimal SQL verbs such as "OR" or "NOT".

- The entire command predicate has become non-sargable, due to a non-sargable predicate
connected by OR.

- The default filter factor is used for range operators (such as > , LIKE or BETWEEN) because
the predicate contains host variables. Due to the default selectivity rules applied by the DB2
optimizer, such specifications may lead to index disqualification. The default filter factor used
for the predicate is shown: it depends on both the range operator type and the number of distinct
column values. For more information, see the table on page 187.

- Range predicates such as >, >=, <, <= are used. These are less selective than BETWEEN.

- A predicates uses indicator variables. Such predicates are neither key-matching or sargable.

- A join predicate violates the datatype and data length rules. Contrarily to normal predicates
(which must be compatible), join predicates require that the datatypes, lengths, precisions and
scales of the join columns be identical.

- A join command omits necessary search conditions. If, in addition to the join predicate, the
command states more "local" predicates, the latter should normally be stated for both join
columns. The DB2 optimizer will automatically add a missing "local" condition, but this will be
done only for an equijoin and when the local condition is sargable.

Many of the above conditions disqualify selective index use, that is, DB2 may decide to read the
entire table, using either an index scan or a DBspace scan (in the latter case, all tables in the DBspace
are scanned). For each of the above conditions, a specific warning message is inserted in the report.

These warning message can be searched by code in the SQL/CA Glossary, while examining the
analysis report on the screen. The Glossary describes the detected performance exposure in full detail
and suggests corrective action. It contains a number of tables that illustrate the rules followed by DB2
in evaluating the command predicate. The Glossary can be found on page 133 of this publication.

A severity code is associated with each warning issued, to indicate its importance. For warnings
involving predicate columns, a distinction is made between indexing and non-indexing columns.
Since a performance exposure concerning an indexing column will have a more considerable
performance impact, a severity 3 code is signalled. For a non-indexing column, a severity code 1 is
associated with the warning.

SQL Command Analysis Page 13

 If a table has N rows and all N values of the column are arranged in ascending order, the value shown4

is at position 0.1*N (for the 10th percentile), 0.5*N (for the 50th percentile) or 0.9*N (for the 90th
percentile).

2.4 Object lists

Following the analysis report, lists are produced to describe the physical characteristics of the tables,
table columns and indexes used by the program. These characteristics and statistical data are taken
from the DB2 catalogs. If no statistics are available for a table (no UPDATE STATISTICS command
executed), the corresponding statistic values are unknown and displayed as ? (a question mark).

The table section shows for each table accessed by the application:

- the name of the table's DBspace
- the average rowlength
- the number of table rows
- the effective number of rows per DBspace page, taking into account the effective freespace class
- the number of table pages
- the percentage of DBspace pages occupied by the table
- the number of dependent and parent tables in a referential integrity environment

The index section shows for all indexes defined on all tables in the table section:

- the "clustered" attribute
- the clustering ratio
- the "first" attribute
- the "unique" attribute
- the first key count
- the full key count
- the number of leaf pages in the index
- the number of levels in the index

The index column section shows for all columns of all indexes appearing in the index section:

- the percentage of distinct column values
- the first eight bytes of the second lowest value in the column.
- the first eight bytes of the second highest value in the column.
- the value of the column at the 10th percentile 4

- the value of the column at the 50th percentile
- the value of the column at the 90th percentile
- the most frequent column value and its percent frequency
- the second most frequent column value and its percent frequency

Page 14 SQL Command Analysis

2.5 Object notes

SQL/CA analyses each DBspace, table or index used by the application and (if applicable) issues
following notes at the end of the analysis report:

- the freespace in a DBspace may not be used during insert activity
- a small DBspace does not have the "row" locklevel
- the DBspace is located in the same storage pool as the DB2 catalogs
- a table has more than 10% overflow rows
- a small table has indexes other than those required for referential integrity or primary keys (small

tables are best processed by DBspace scan)
- VARCHAR or VARGRAPHIC columns are part of an index definition: such indexes will never

be used for an index-only scan
- the first column of a composite index is not the most selective one

2.6 Analysis summary

At the end of the report, a summary is printed that shows the highest SQL cost value encountered in
the program, the number of DBspace and index scans and the number of SQL/CA warnings, by
warning severity.

2.7 User interface

SQL/CA functions are normally invoked using a menu driven interface. Analysis of sources residing
in CMS files can also be requested from a CMS Filelist or from a user CMS EXEC.

2.8 SQL/CA help

Online help is provided at all levels of the SQL/CA user interface. The product also provides an
online Glossary that explains the messages issued during analysis and defines most of the DB2
technical terminology and the SQL/CA specific terms. This glossary may be printed or edited. It can
be also displayed by function key while the analysis report is being examined.

SQL Command Analysis Page 15

2.9 Additional processing options

A number of additional processing options can be entered on the SQL/CA analysis control screen.

2.9.1 Archiving Analyzed Commands and Results

Enabling the option causes the extracted SQL commands, their EXPLAIN results and eventual
SQL/CA warnings to be stored into the SQL/CA archive tables. As more applications are being
analyzed, the archive tables will contain a record of all application SQL commands with their
execution characteristics, as obtained by SQL Explain and SQL/CA text analysis. The archive
may then prove useful for the performance management of SQL applications.

The "key" of the archive tables is composed of the filename of the application program, the
connected database name and the analysing userid. Thus, the same command analysed in
different databases or by different users, will generate multiple archive entries.

When analysis results are stored for a given command, an archive querynumber is assigned to
the command and printed on the analysis report.

A number of archive queries is provided with the product in order to report SQL commands

- by cost
- by access type (DBspace scan, index scan, index access)
- by access method (join, sort)
- by SQL/CA warning code
- by SQL command
- by subquery
- by response size
- by cross reference between programs and tables, indexes or columns referred to

Each database may have its own archive tables. Alternatively, a common database may be
designated to hold the archived data. In the latter case, SQL/CA will automatically perform all
necessary database switching.

An archived SQL command can be imported into a CMS file and re-analyzed.

Notes:

1. The archive query and archive import functions require that the user has explicit SQL
SELECT privileges on the archive tables.

2. When the archive tables are shared between databases, the user performing analysis must be
able to connect to the archive database under his current DB2 userid and must have run
privilege on the SQL/CA packages in that database.

Page 16 SQL Command Analysis

2.9.2 Editing the Analysis Report

If requested, the analysis report will be XEDITed after command analysis. While the report is
being edited, following PFkeys have a specific meaning:

PF1 displays the SQL/CA glossary; if the cursor is located on an analysis warning message,
the glossary is positioned to the description of the warning

PF2 locates the next analysis warning on the current page
PF3 quits report editor
PF4 positions to the begin of the current SQL command being analyzed
PF5 positions to the begin of the current SQL subquery if the command contains subqueries.
PF6 locates the next analysis warning on the following page
PF7 displays the previous report page
PF8 displays the next report page
PF9 switches to condensed/non-condensed report display, in a flip-flop manner
PF10 locates the next SQL command

2.9.3 Printing the Analysis Report

If requested, the analysis report will be printed after analysis using the current spool options of
the virtual printer. If the report should be printed by RSCS, it is the user's responsibility to setup
RSCS routing before invoking analysis.

Uppercase Printing

When used in conjunction with the print option, the analysis report will be translated to uppercase
in view of processing by printer devices without lowercase font.

2.9.4 Saving the Analysis Report

When an application program is being analyzed and an analysis report already exists, the existing
report will be replaced by the new one. The save option will rename the existing report before
starting analysis.

SQL Command Analysis Page 17

2.9.5 Updating Statistics before analysis

The SQL Explain command and the DB2 Optimizer rely on statistical data recorded in the DB2
catalog tables. To obtain reliable explain results, it is important that these statistics be up to date.
If enabled, the update statistics option will automatically perform an "UPDATE STATISTICS"
command prior to command explain for all tables referenced by the application. Auto-statistics
may be unconditional or be requested on a "first time" basis, that is, when statistics have never
been updated for the table.

Updating statistics for all columns

When used with Auto-Statistics, the option will perform an UPDATE STATISTICS for all table
columns. By default, statistics are updated for the indexing table columns only. Updating all
column statistics requires an additional DBspace scan, but provides statistical information for all
table columns.

Note:

Performing update statistics for large tables may be time consuming and lock out other DB2 users
trying to access the table. SQL/CA contains an automated update statistics facility which can be
run during off-shift.

Page 18 SQL Command Analysis

 Since the DB2 authorization schemes also apply to the EXPLAIN command, developers can analyze5

only against the tables they are authorized on. On the other hand, it may be desirable to analyze SQL
commands against tables in the operational environment. By granting operational database access to the
SQL/CA batch userid, developers are able to analyze in a life environment, without having privileges
themselves in the operational database.

2.9.6 Command Analysis in server mode

Analyzing applications containing many SQL commands may be time consuming and cause
additional contention on the DB2 catalog tables. Therefore, an option has been provided to
forward the analysis request to a server machine, executing the SQL/CA analysis program in
disconnected mode. Moreover, the server can be tailored to execute the analysis requests at
specific times (during offshift for instance).

Requests for analysis may be sent by non-VM clients, capable of storing data into the VM reader
queue. Server-mode analysis can be done under the userid (and DB2 privileges) of the sending
user or under the userid of the server, which may have broader DB2 privileges. After server-5

mode analysis, the report is returned to the virtual reader of the requesting user.

Note:

SQL/CA uses CMS SENDFILE facilities when forwarding the source to the server. This implies
that the specified servername may be either a VM machine name or a CMS "nickname", defined
in a CMS "NAMES" file. In the latter case, a network node can be defined for the nickname and
the server may reside in any node of the network.

SQL Command Analysis Page 19

2.9.7 Copying the Analysis Report for another user

This option allows a developer to forward the analysis report to another user (the DBA for
instance) for further examination. The copy is sent only when warnings of severity 2 or 3 have
been issued.

2.9.8 Copying the Source Extract for another user

This option allows the user to send the SQL commands and host variables extracted from his
application, to another user for analysis by SQL/CA in that user's machine (and with that user's
DB2 privileges).

2.9.9 Connecting a DB2 database or userid

By default, analysis is performed in the current database and with the default DB2 userid.
Connection to another database and/or DB2 userid may be requested during analysis. When
connecting another userid, the password of that user must be supplied. Please note that the
connected database server should be a DB2/VM server.

If server-mode analysis has been requested, analysis is performed using the default connections
of the server. If these are not satisfactory, the desired database and/or userid must be supplied
when the server-mode analysis request is being made. You can overwrite the databasename, the
username or both.

The last databasename, userid and password supplied are kept across SQL/CA sessions.

Page 20 SQL Command Analysis

2.10 Simulation facilities during analysis

When analyzing a CMS application, XEDIT can be invoked from the initial selection screen. This
allows to modify the application SQL and verify the result by requesting a new analysis.

When analyzing CMS applications or DB2 packages, the initial selection screen allows to create or
drop an index. After creating an index, its effect on access path selection can be verified by
requesting a new analysis.

SQL Command Analysis Page 21

2.11 Automated table statistics

SQL/CA provides a program that automatically updates the statistics for designated tables in a
database, either on a periodical basis or depending on the growth rate of the tables. When statistics
have been updated, packages depending on the affected tables will be automatically invalidated and
reprepped. This ensures that these packages take advantage of the optimal access paths available as
a result of the statistics update process. Following statistic updating, the program will list the state
of the first index, the current number of table rows, the current overflow row percentage and the table
growth rate if applicable. If defined, a user exit will be invoked after updating the statistics and before
reprepping the packages. The arguments to the exit include the table and DBspace name and some
statistical data from the DB2 catalogs, such as the clustering state of the first index, the number of
table rows, the number of table overflow rows and the table growth rate. Depending on this
information, the exit may start specific processing, such as reorganizing the table. After statistics,
users may request automatic index reorganization in order to remove empty index pages for
example. However, to recluster an unclustered index, a table reorganization must be performed.

The statistics update routine is usually invoked from the batch SQL/CA server and may be tailored
to execute during specific periods of time (off-shift).

2.12 DB2 program monitoring

DB2/VM may automatically change the data access strategy of a stored package depending on the
state of the database objects used by the program. For instance, indexed access in a given program
command may be changed without warning to DBspace scan access, due to an increase in table rows
or changes in index definitions. Such event may have a serious effect on program response time. The
SQL COMMAND ANALYSIS program monitoring facility will detect and report such unforeseen
changes in access method and cost, so that database administration may proceed to problem
determination - using the monitor analysis results - before users are affected by the response time
impact. Indirectly, program monitoring allows to perform command analysis for packages in the
database, without manual intervention. The facility should run on a periodical basis, preferably in
conjunction with the auto-statistics function described above.

Page 22 SQL Command Analysis

2.13 DB2 data modelling facility

It is desirable that the development databases resemble the production databases as much as possible.
This ensures that access paths chosen by DB2 for the test programs are identical to those in the
production system. However, completely replicating the operational data in the test database usually
is not practical or feasible. In fact, it is not necessary : DB2/VM allows database administrators to
modify certain columns in the catalog tables, in order to create a model of a production database on
a test system. SQL statements in the test system are then executed using the access path that would
have been chosen in the production system. Manually modelling the catalogs is time-consuming and
requires knowledge about DB2 internals. Therefore, SQL/CA offers a utility program that can be used
to quickly copy the catalog statistics from one system to another.

The data modelling facility can also be used to model future production systems and to test what if
scenario's. For example: how will a program behave when a given table becomes very large?

SQL Command Analysis Page 23

2.14 SQL/CA software prerequisites

- VM/SP Release 5.0(and later) or VM/XA Release 2.0 (and later)
- VM/ESA Release 1.0 (and later)
- VM/CMS Utilities (if the REPORTWAIT option is used)
- VM/REXX (if REXX/SQL applications are analyzed)
- DB2/VM Version 3 and later

Page 24 SQL Command Analysis

SQL Command Analysis Page 25

3 SQL/CA INSTALLATION

3.1 Installing the CMS product material

This installation step loads the SQL/CA modules, execs, helpfiles and other material from the
distribution medium to the public disk or directory chosen as residence for SQL/CA.

The same installation procedure is used for a first-time installation and for installing updated SQL/CA
versions. The DB2/VM related installation must be performed for each database where SQL/CA will
be executed.

3.1.1 Prerequisites

1. Ensure that the VM userid performing the installation has write access to the public minidisk
or directory that will contain SQL/CA.

2. Ensure that enough space is available on that minidisk or directory. See "SQL/CA Size
Estimates" on page 33.

3. Ensure that you have access to the DB2/VM production minidisk.
4. If SQL/CA has been received on tape, ensure that a tape or cardtridge device has been

attached to the virtual machine with virtual address 181.

3.1.2 Installation

1. Access the public SQL/CA minidisk or directory with CMS filemode A.
2. If you received the product on tape, issue the command: TAPE LOAD * * A.When the

TAPE LOAD command has completed, you do no longer need the distribution tape.
3. If you received the product on another medium, use its INSTALL procedure to load the

product code on the SQL/CA minidisk.

3.1.3 Linking the SQL/CA Modules

1. With the public SQL/CA minidisk or directory accessed as "A" enter SQLCAPI on the CMS
prompt.

2. On the next panel, choose “CMS Installation”.
3. The SQL/CA modules are now linked.
4. On a first-time installation, the default SQL/CA processing options file is stored on the

SQL/CA minidisk or directory as SQLCA OPTIONS. When SQL/CA has been installed
previously, the existing SQLCA OPTIONS file (which may have been customized) will not
be affected. Instead, the distributed options file will be stored on the minidisk as SQLCA
STDOPT.

5. The message "SQL/CA CMS Install complete" appears at the end of the installation.

Page 26 SQL Command Analysis

3.1.4 Customizing the SQL/CA Default Processing Options

After a first-time installation, you may wish to update (using XEDIT) the default SQL/CA
processing options as recorded in the CMS file "SQLCA OPTIONS".

For a description of the control statements used in the OPTIONS file, please refer to the chapter
System Processing Options File of the SQL/CA User’s Guide.

SQL Command Analysis Page 27

3.2 DB2/VM related installation

The DB2/VM installation procedure will perform one or more of the following steps in one or more
named databases:

1. Connect the target database.
2. Acquire the required DYNPRG DBspace and create the DYNPRG table
3. Optionally, acquire the ARCHIVE DBspace, create the archive tables and load the ISQL archive

query routines.
4. Optionally, acquire the process control DBspace and create the process control table.
5. Load the SQL/CA packages and load the dynamic SQL/CA program statements in the DYNPRG

table.
6. Grant EXECUTE authority on the SQL/CA packages to one or more users.

The installation procedures allows you to bypass one or more of the above steps.

When installation has been completed, you may wish to verify the installation process. You can do
so by invoking command analysis for the sample program SQLCADMO PLIOPT that is part of the
distributed software material. (You don’t need the PL/1 compiler for the analysis).

3.2.1 Prerequisites

1. You should have access to the SQL/CA minidisk or directory in any filemode, preferably
different from A. If access is done using filemode A, the installation steps 4, 5 and 6 will
permanently alter the DBspace acquisition model files SQLCADB1 DBS, SQLCADB2 DBS
and SQLCADB3 DBS on the SQL/CA installation disk.

2. You should have access to the DB2/VM production minidisk.
3. Enough DBspaces of the appropriate size should be available for creating the SQL/CA tables.

Please refer to the section "SQL/CA Size Estimates" on page 33.
4. You should be able to connect as DB2/VM user 'SQLDBA'.

Page 28 SQL Command Analysis

3.2.2 Installation

Type SQLCAPI on the CMS prompt and choose “SQL Installation” on the next panel.

On the following panel, press PF3 to terminate installation or specify the following installation
controls:

1. The name of the database where SQL/CA should be installed.

2. The password of the DB2/VM userid SQLDBA in that database. (DBA authority is required
to acquire the SQL/CA DBspaces.)

3. If the mandatory DYNPRG DBspace has not been acquired yet in the current database,
reply Y after the prompt "Create required SQLCA_DYNPRG?".

4. If you intend to use the SQL/CA archiving or program monitoring facility and if the archive
tables should reside in the current database (as specified in the DATABASE statement of the
SQLCA OPTIONS file), reply Y after the prompt "Create optional SQLCA_ARCHIVE?".

5. If you intend to use the SQLCABAS program for performing automated table statistics or
program monitoring, reply Y after the prompt "Create optional SQLCA_CONTROL?".
Contrarily to the archive DBspace, the process control DBspace cannot be shared between
databases. Therefore, every database which will be connected to SQLCABAS (as a result of
the CONNECT statement in the SQLCABAS control file) needs a process control DBspace.

6. To load the SQL/CA packages in the current database and to create the SQL/CA dynamic
programs in the DYNPRG table, reply Y after the prompt "Load SQL/CA packages?”

7. To grant EXECUTE authority on the SQL/CA packages in the current database, enter a DB2
userid after the prompt "Grant EXECUTE on SQL/CA to user :”

SQL Command Analysis Page 29

Installation Procedure

1 You replied Y after the prompt "Create required SQLCA_DYNPRG".
The DBspace acquisition command file SQLCADB1 DBS is copied to your A-disk and
XEDITed. Specify the STORPOOL parameter and issue an XEDIT file command to start
the DBspace acquisition and table creation. Since a minimal DBspace is sufficient for the
DYNPRG table, the PAGES=128 parameter need not to be modified. PCTFREE=0 is
specified because the DYNPRG is a read-only table. If SQL errors occur during this step,
refer to paragraph 6 "SQLDBSU Errors".

2 You replied Y after the prompt "Create optional SQLCA_ARCHIVE".
The DBspace acquisition command file SQLCADB2 DBS is copied to your A-disk and
XEDITed. Specify the STORPOOL parameter and perform an XEDIT file command to start
the DBspace acquisition and table creation. The PAGES parameter reflects the installation
defaults (see the section "SQL/CA Size Estimates" on page 33 if you wish to modify this
parameter). The DB2/VM default PCTFREE, PCTINDEX and LOCK parameters should be
appropriate. This step will also store the ISQL routines for the SQL/CA archive queries in
the SQLDBA.ROUTINE table. If SQL errors occur during this step, refer to paragraph 6
"SQLDBSU Errors".

3 You replied Y after the prompt "Create optional SQLCA_CONTROL".
The DBspace acquisition command file SQLCADB3 DBS is copied to your A-disk and
XEDITed. Specify the STORPOOL parameter and perform an XEDIT file command to start
the DBspace acquisition and table creation. The PAGES parameter reflects the system default
(see the section "SQL/CA Size Estimates" on page 33). The DB2/VM default PCTFREE,
PCTINDEX and LOCK parameters should be appropriate. If SQL errors occur during this
step, refer to paragraph 6 "SQLDBSU Errors".

4 You replied Y after the prompt "Load SQLCA packages".
The SQL/CA packages are loaded in the current database and the SQL/CA dynamic
programs are stored in the DYNPRG table.

5 You entered a DB2 userid after the prompt "Grant EXECUTE on SQL/CA to user".
EXECUTE authority is granted on the SQL/CA packages to the named user.

6 After completion of the above steps, control is transferred to the initial installation panel, to
allow for installation in another database.

7 SQLDBSU Errors.
The installation procedure performs DBspace acquisition and table creation by calling
SQLDBSU. If an error is detected by SQLDBSU, the SQLDBSU control listing is XEDITed
on the terminal. After inspecting it, you will be asked how this error should be handled.

Enter A to abort the installation procedure
Enter C to correct the error and XEDIT the SQLDBSU stream for correction.
Enter I to ignore the error and continue with the next instalation step.

Page 30 SQL Command Analysis

3.3 VM/CSP considerations

When analyzing a CSP application, SQL/CA invokes CSP with an EZECIN command file that
contains a print command for the named CSP application. The CSP invocation procedure is a REXX
EXEC, called SQLCACSP. SQLCACSP on its turn calls another EXEC, named SQLCACSI for
opening ('EXEC SQLCACSI OPEN') and closing ('EXEC SQLCACSI CLOSE') the CSP
environment. The SQLCACSI EXEC initiates a standard CSP environment by executing the IBM
EXEC's CSPDDLBL and USERDLBL on the CSPUSER 193 minidisk. This results in the definition
of a read/write MSL on the user's 503 minidisk. The standard CSP invocation procedure then allows
to analyze applications from that primary MSL. If you have a differently customized CSP
environment (with project MSL's for instance), you may have to alter the SQLCACSI EXEC, in
order to suit your CSP setup.

Alternatively, you can write a CMS EXEC which invokes a customized CSP environment. When a
user invokes CSP application analysis, the name of this EXEC can be entered as a function parameter
when performing CSP analysis.

Invocation EXEC entry values

When invoking the customized EXEC, SQL/CA passes 3 parameters:

- the filename and filetype of a CMS file built by SQL/CA; that file contains following
command: PRINT MEMBER(application_name);

- the name of the CSP application to be analyzed

Prior to invocation, SQL/CA has issued following VM commands:

CHANGE RDR CLASS S HOLD
SPOOL 00E * CLASS S CONT

Invocation EXEC exit values

On exit from the customized invocation EXEC, SQL/CA expects the listing of the
application to be analyzed in its reader or as a CMS file with filetype LISTING on minidisk
A.

SQL Command Analysis Page 31

3.4 VSE/CSP considerations

There is no explicit support for VSE/CSP in SQL/CA. If applications to be analyzed reside in a
VSE/CSP MSL, there are two solutions:

- If VM/CSP has been installed, the SQLCACSP EXEC may be customized to link to the VSE
minidisk containing the VSAM catalog and the CSP library. Normal VM/CMS facilities can be
used to achieve this.

- If VM/CSP has not been installed, the VSE/CSP application should be obtained by submitting
a VSE job to print the application into the reader of the virtual machine requesting analysis. A
skeleton job, named SQLCACSV EXEC, is provided with SQL/CA. You can use it as a base
for installing your own support.

Page 32 SQL Command Analysis

NATURAL_programname = 'NAT22'
NATURAL_userid = 'SAGDBA'
NATURAL_mdisk = '196'
NATURAL_mdisk_password = 'PASS196'
NATURAL_command_separator= ','

3.5 NATURAL considerations

NATURAL application analysis is controlled by the SQL/CA EXEC SQLCAM12.

Before starting analysis, an EXEC named SQLCANT0 is invoked for defining the following NATURAL
related global variables:

- NATURAL module name; if NATURAL is called by an exec, enter EXEC nnn as assignment value
- the CMS userid, the virtual address and the password for the minidisk that contains the NATURAL

software material; if this minidisk is public, set the above 3 parameters to blank
- the NATURAL command separator (default is a comma)

Following default values for these variables are stored as REXX assignments at the beginning of SQLCANT0.
Change the assignments to meet your installation requirements.

SQL Command Analysis Page 33

3.6 SQL/CA size estimates

3.6.1 CMS Minidisk or directory Requirements

The SQL/CA CMS material requires about 10 3380 cylinders on the public product disk or directory.

3.6.2 DYNPRG DBspace Size

The DBspace SQLCA_DYNPRG contains a table required during SQL/CA execution. The table is very
small and read-only. The minimal DB2/VM space allocation (128 pages) is appropriate.

3.6.3 ARCHIVE DBspace Size

The DBspace SQLCA_ARCHIVE is optional and is used only when the analysis archiving option is
enabled. It contains following tables:

SQLCA_Index Contains the archived SQL command text with redundant clauses (such as
"INTO") omitted. An average command length of 512 characters is assumed
in view of the size estimate.

SQLCA_Cost Contains the SQL explain COST data for the archived commands.

SQLCA_Plan Contains the SQL explain PLAN data for the archived commands.

SQLCA_Reference Contains the SQL explain REFERENCE data for the archived commands.

SQLCA_Structure Contains the SQL explain STRUCTURE data for the archived commands.

Page 34 SQL Command Analysis

The total size of the ARCHIVE DBspace is 3328 pages in the distributed SQLDBSU command stream.
This provides for about 4096 archived SQL commands, assuming that the average SQL command is 512
characters long, contains 2 subqueries, 3 plans and 8 columns references. The following table shows the
detail of the estimated space parameters.

Table name Rowlen Rows/ Nr of Nr of Pages + Round
Page Rows Pages Indexes to 128

INDEX 680 4 4096 1024 1362 1408

COST 14 220 8192 37 49 128

PLAN 67 46 12288 267 355 384

REFERENCE 85 37 32768 885 1177 1280

STRUCTURE 21 147 8192 55 71 128

Note:

- The calculations are based on PCTFREE=15 and PCTINDEX=33 (the DB2/VM defaults).

- When estimating the archive table size, be aware that SQL commands contained in a given
program may appear more than once in the archive. This will be the case if the same program
is analyzed in several databases or by different users.

3.6.4 PROCESS CONTROL DBspace Size

The DBspace SQLCA_CONTROL is optional and is used only when the automatic statistics or
the program monitoring options are enabled. It contains the table PROCESS_CONTROL. The
SQLCABAS auto-statistics facility maintains one row for each table that has been selected for
automatic statistics. The SQLCABAS program monitoring facility maintains one row for each
package selected for monitoring. Since a DBspace page with the default PCTFREE contains 72
process control table rows, the minimal DBspace allocation provides for more than 4096 table
entries.

SQL Command Analysis Page 35

3.7 Granting SQL/CA related privileges

3.7.1 Grant RUN privilege on SQL/CA

To enable a user to execute the SQL Command Analysis program in a given database,
EXECUTE authority is required on the DB2/VM packages SQLCAXC, SQLCAXC2 and
SQLCPEX. Querying the archive tables by SQL/CA warning code also requires EXECUTE
authority on the package SQLCAXM.

Use the GRANT EXECUTE option of the SQLCAPI menu to perform the above GRANTs.

If the SQL/CA archive tables are shared between databases, SQL/CA will automatically switch
between the user's database and the archive database. Therefore, each SQL/CA user should have
CONNECT authority to the archive database under his own DB2/VM userid and RUN privilege
on the above packages in the archive database.

Page 36 SQL Command Analysis

3.7.2 Granting SQLCABAS

When the SQLCABAS INVALIDATE option is used to re-prep dependent packages, DBA
authority is required during execution, since it implies updating the
SYSTEM.SYSACCESS.VALID column. However, since the SYSACCESS UPDATE is done
in dynamic mode, SQLCABAS can be granted to non-DBA users, as long as they do not invoke
the INVALIDATE function.

No DBA authority is required when the REBIND option is used for reprepping dependent
packages, as long as the user rebinds his own packages. DBA authority is required to rebind
packages for other users.

3.7.3 Grant SELECT Privilege on SQL/CA Archive Tables

To enable a user to execute the ISQL routines that implement the SQL/CA archive queries,
access to the SQLDBA.ROUTINE table should be granted and SELECT authority should be
given for the following tables:

- SQLDBA.SQLCA_INDEX
- SQLDBA.SQLCA_COST
- SQLDBA.SQLCA_PLAN
- SQLDBA.SQLCA_REFERENCE
- SQLDBA.SQLCA_STRUCTURE
- SQLDBA.ROUTINE

To enable a user to import an archived SQL command, SELECT authority should be granted for
the table SQLDBA.SQLCA_INDEX.

SQL Command Analysis Page 37

3.8 Installing an SQL/CA Server

To install an SQL/Command Analysis server, perform the following:

1. Setup a new VM machine with a name of your choice, for example SQLCASRV. If you choose
another name, replace SQLCASRV with that name in all the following steps.

2. In the profile EXEC of SQLCASRV, insert the command EXEC SQLCABAT 00:00 NONE,
if your intention is to process analysis requests only. If you wish to use the virtual machine to
perform auto-statistics as well, additional parameters are required on the SQLCABAT call, as
described in the SQL/CA User's Guide in the chapter SQL/CA Batch Facility.

3. Ensure that the SQLCASRV machine has access to the SQL/CA product minidisk.

4. Create the DB2/VM userid SQLCASRV in all databases to which the server will connect on
behalf of a client request. In most cases, you will want this userid to perform analysis of all
applications. Therefore, it must also have the privileges to access all the tables referenced by
these applications (this is a requirement of the SQL EXPLAIN command). The easiest way to
achieve this is to give DBA authority to SQLCASRV.

5. Ensure that you have a private or public Dbspace in which to create the EXPLAIN tables. For
optimal EXPLAIN performance, use a dedicated Dbspace for the EXPLAIN tables.

6. Create the EXPLAIN tables for user SQLCASRV. To do so, type SQLCA at the CMS prompt.
Invoke the SQL/CA Utilities Menu and choose the Create Explain Tables function of that
menu. If the server will connect to multiple databases, perform this step in each of these
databases.

7. Ensure that SQLCASRV is auto-logged during VM IPL.

8. If server-mode analysis will be the default analysis procedure, update the SQLCA OPTIONS
file and insert the statement DELAY SQLCASRV. This ensures that all user analysis requests
are forwarded to SQLCASRV by default.

9. Logon the server and create the DB2/VM bootstrap module on its A-disk, by performing an
SQLINIT.

Page 38 SQL Command Analysis

3.9 SQL/CA SERVER User exit

If the SQL/CA server finds the SQLCAMSG exec on its CMS search chain, a call will be made to
that EXEC at the start and the end of an analysis.

On the call, following arguments are passed to SQLCAMSG:

- call type as:
- START at the begin of an analysis
- END at the normal completion of an analysis
- ABEND at the abnormal completion of an analysis
- userid submitting the request
- name of the analysis request file
- filetype of the analysis request file

The main purpose of the SQLCAMSG exec is to send messages and inform the submitting user about
the progress of analysis.

SQL Command Analysis Page 39

3.10 EXPLAIN table usage by SQL/CA

SQL/CA must have exclusive control over the EXPLAIN tables used during analysis. Which
EXPLAIN tables are used depends on the DB2/VM userid active during EXPLAIN. This userid
becomes the creator of the explain tables: it can be specified in different ways on the SQL/CA menus.

Due to the method used by SQL/CA for accessing the EXPLAIN tables, it is not possible for the user
to maintain its own explain output in those tables. These data will be cleared by SQL/CA at the next
analysis request.

Generally, the EXPLAIN tables have very few rows and are best processed by a DBspace scan. For
optimal performance, the user's 4 EXPLAIN tables should be created in a dedicated DBspace and no
indexes should be defined on them.

After issuing the EXPLAIN command, SQL/CA has to process the EXPLAIN tables of the user. This
cannot be achieved in static mode, since the creator of the EXPLAIN tables is unknown at
preprocessing time. Instead, SQL/CA creates an extended dynamic package, the first time a user
invokes Command Analysis. The package is named userid.SQLCAXU2. This package is managed
in the same manner as static packages. If a package is dropped, it is automatically recreated by
SQL/CA at the next analysis.

Page 40 SQL Command Analysis

3.11 ALIAS USERNAMES

3.11.1 Functional Description

In some cases, it may be desirable that users perform program analysis using a DB2/VM
authorization ID, other than their own. For example, several developers within a team may use
the same DB2/VM userid when preprocessing their programs. This facilitates authorization
management and allows developers to work on each other's programs and use each other's tables.
In such cases, analysis must also be done under the common DB2/VM username. The alias
facility allows the system administrator to define each of these users in the SQLCA CONNECT
file and specify the DB2/VM username and password to be used by SQL/CA when the user
forwards an analysis request. Since the CONNECT file contains sensitive data (the user
password), it is kept in encrypted format by SQL/CA. The CONNECT file should be on a
minidisk or in a directory that is accessible to the users during analysis. It may be placed on the
disk containing the SQL/CA software material for instance.

3.11.2 Defining an alias

To define (or remove) an alias, access the minidisk or directory containing the SQLCA
CONNECT file in filemode A. Issue SQLCALIA on the CMS prompt. The program saves the
current SQLCA CONNECT as SQLCA CONNECTS. Then, the SQLCA CONNECT file is
decrypted into a file named CONNECT INPUT. The CONNECT INPUT file is then XEDITed.
Use XEDIT commands to insert (or remove) records that define the alias names. Issuing XEDIT
file will encrypt and copy the CONNECT INPUT file to SQLCA CONNECT. The alias
definitions take effect from this moment on.

Each alias description line has the following syntax:

CONNECT user_name TO database_name AS alias_name alias_password

Meaning: when user_name connects to database_name, connect should be done automatically
by SQL/CA, using alias_name and alias_password. If user_name is specified as *, all users
connect to the database under the alias name.

SQL/CA scans the SQLCA CONNECT file sequentially and stops its search for alias
replacements when a line is found where both user_name and database_name are matching.

For example: to allow a number of DB2/VM developers named SQLDEV1 thru SQLDEVn to
connect under the common SQLDEV username, following lines should be coded in the
CONNECT file:

- CONNECT SQLDEV1 TO DBTEST AS SQLDEV SQLDEVPW
- other CONNECTs
- CONNECT SQLDEVn TO DBTEST AS SQLDEV SQLDEVPW

SQL Command Analysis Page 41

 One of the SQL/CA menu options allows you to create these tables. You do not need explain tables6

if you perform analysis in server mode only.

4 Using SQL/CA

4.1 Prerequisites

Prior to using SQL/CA, you should ensure that following prerequisites are met:

- You should have access (in any CMS filemode) to the public minidisk, containing the SQL/CA
software material.

- You should have access to the DB2 production minidisk.
- You should be able to connect to the DB2 database where you want analysis to occur.
- You should have the DB2 bootstrap modules on your A-disk, that is, an SQLINIT should have

been executed previously..
- You should have access to the DB2 explain tables, created under your DB2 userid.6

4.2 SQL/CA - SQL/MF integration

If our SQL/MF monitor program product has been installed, real-time execution statistics will be
included for each analyzed application, under the following conditions:

- The VM userid performing analysis should have a read link to the SQL/MF product disk.
- The DB2 userid active during analysis should be able to connect to the SQL/MF Log database.
- The DB2 userid should have been granted the SELECT privilege on the monitor table

SQLCS_SQL_STMNTS.

If analyses are executed in server-mode, the above conditions can be met easily. Since the server must
have DBA authority to explain other user’s packages, it is sufficient to grant DBA authority to the
analysis server in the SQL/MF log database and to provide a link to the SQL/MF disk.

Page 42 SQL Command Analysis

 All SQL/CA components execute as CMS nucleus extensions. Therefore, the SQL/CA menu may also7

be invoked from the CMS subset of any other program.

4.3 Using the SQL/CA command menu

To invoke the SQL/CA command menu, enter SQLCA at the CMS prompt . Following menu screen7

will be presented:

 * SQL Command Analysis Menu *

 Analyze CMS Source Program : 1
 Analyze CSP Application : 2
 Analyze REXX Application : 3
 Analyze NATURAL Application : 4
 Analyze Stored SQL Query : 5
 Analyze SQL Package : 6
 Interactive Command Analysis : 7
 Table Oriented Analysis : 8
 Query Analysis Archive : 9
 SQL/CA Utilities Menu : 10

 Select Menu Option : _

 Database : DBTEST
 PF1 = Help PF3 =Quit
 (C) Copyright Software Product Research - 1996

Option codes:

1 Analyses a CMS source program (Assembler, Cobol, Fortran, PL/1,Easytrieve)
2 Analyses a CSP application.
3 Analyses a REXX application.
4 Analyses a NATURAL application.
5 Analyses a stored ISQL or QMF query.
6 Analyses a DB2 package.
7 Analyses a command interactively.
8 Analyses DB2 packages for a designated table name.
9 Queries the SQL/CA archive tables.
10 Invokes the SQL/CA Utilities menu

The desired function is selected by entering its numeric code and pressing ENTER.

SQL Command Analysis Page 43

4.3.1 CMS source program analysis

The following function screen will request the name of the application source file to be analyzed
and the non-default analysis processing options.

 * Analyze CMS Source Program *

 Program name to analyze : _
 Archive analysis results : YES
 Edit analysis report : YES
 Print analysis report : NO
 Uppercase print : NO
 Save previous analysis report : NO
 Update statistics before analysis : FIRST
 Update statistics for all columns : NO
 Delayed analysis by userid :
 Copy analysis report to userid :
 Copy source extract to userid :
 Connect to database :
 as SQL user :
 with password :

 PF1=Help PF2=Reports PF3=Quit PF4=XEDIT PF5=Indexing

Page 44 SQL Command Analysis

PFkey Assignments

- To display online SQL/CA help, press PF1.
- To display the analysis reports sent by an analysis server, press PF2.
- To exit analysis, press PF3.
- To edit the analyzed source, press PF4. This will start an XEDIT session. After modifying

the source, the menu panel is shown again, so that you may request analysis of the modified
source

- Using PF5, you can create or drop an index while remaining in the SQL/CA environment.
After creating a new index, you may re-analyze the application, to note the effect of the
index on access path selection.

Creating or dropping an index from SQL/CA

If you wish to create an index, enter the following data:

- The code C in the first screen field to request index creation.
- The name of the database where the index should be created. Before creating the index, the

interface will connect your default DB2_id to the named database. This userid should have
the required authority to create the index.

- The index creator name. (The default is your VM userid).
- The name of the index.
- The unicity of the index (Y for a unique index, N for a non-unique index).
- The creator of the table to be indexed.
- The name of the table to be indexed.
- The name(s) of the indexing column(s). Up to 10 columns can be specified, each

columnname being entered in its own screen field. By default ASC ordering is assumed. If
the column must be indexed on descending value, enter the word DESC after the column
name.

If you wish to drop an index, enter the following data:

- The code D in the first screen field to request index drop.
- The name of the database where the index should be dropped. Before creating the index, the

interface will connect your default DB2_id to the named database.
- The index creator name. (The default is your VM userid).
- The name of the index.

Note:

The meaning of the ENTER, the PF1, PF2 and PF3 keys is identical in all SQL/CA menu
functions. The online help texts are displayed using the CMS HELP facility and the standard
PFkey settings apply when browsing through the help text.

SQL Command Analysis Page 45

4.3.1.1 Program name to analyze

Enter the name of the CMS file containing the source program to be analyzed as filename,
filetype and filemode (filemode defaults to A). Filename and filetype may contain a generic
CMS name such as ABC* COBOL, if several programs should be analyzed in one run.

Since SQL/CA extracts SQL commands and host variable declarations, it must know the
language the application is written in. SQL/CA derives the language from the CMS filetype
as follows:

Language If filetype starts with:

Assembler ASS or ASM

Cobol COB

Fortran FORT

PL/1 PLI

For COBOL, Easytrieve and PL/1 programs, the language will be determined from the
source text, if the filetype does not start with “COB”, “EZT” or “PLI” respectively. A
COBOL program is recognized by the occurrence of the statement ID[ENTIFICATION]-
DIVISION. A PL/1 program is recognized by the occurrence of the statement
PROC[EDURE] OPTIONS(MAIN). An Easytrieve application is assumed if the first line in
the source equals * PARM.

If the CMS filetype equals SQLACMOD or SQLPACK, you may analyze an package,
unloaded outside SQL/CA, using DB2 Database Services. The unload file may contain
multiple packages.

 If the filetype is not equal to any of the above, a source containing SQL commands in Data
Base Services format is assumed. In this case, a semicolon (;) is expected as delimiter of the
individual SQL commands. Parameter markers (?) or variable names (&name) may be used
to designate variable syntactical elements. Host variables should not be present, since the file
format does not allow for an SQL DECLARE SECTION.

If another user did send his source extract to your A-disk (using one of the processing
options), that source will have filetype EXTRACT. SQL/CA determines the original
language from the extract.

The application source may contain external text embedded by means of the SQL INCLUDE
command. The external text is inserted by SQL/CA during analysis.

The record length of the source file should not exceed 8192 characters.

Page 46 SQL Command Analysis

4.3.1.2 Additional processing options

The following fields on the screen allow to specify analysis processing options. The default
options (as stored in the SQL/CA system OPTIONS file) are displayed and may be
overridden for the current run.

For a complete functional description of the processing options, refer to the paragraph
"Additional Processing Options" in the Functional Description on page 15.

Archive analysis results

Specify YES if the extracted SQL command and its EXPLAIN results should be archived
into the SQL/CA archive tables.

Edit analysis report

Specify YES if the analysis report should be displayed after analysis, using XEDIT. Specify
W1, W2 or W3 if the report should be edited only when analysis has generated warnings of
severity 1, 2 or 3.

Print analysis report

Specify YES if the analysis report should be printed after analysis using the current spool
options of the virtual printer. Specify W1, W2 or W3 if the report should be printed after
analysis warnings of severity 1, 2 or 3. Specify SHORT if the report should be printed in
condensed format. A condensed report contains the command text and the related warnings
only. All other print options will print the report in non-condensed format.

Uppercase print

Specify YES in conjunction with PRINT YES to force uppercase translation for printer
devices without lowercase font.

Save previous analysis report

If you already have an analysis report (<filename> SQLCA) for the application on your A-
disk and you want to preserve it, specify YES. This will rename the existing report to a file
named <filename> SQLCAXXX, where XXX is a sequence number assigned by SQL/CA.
If no saved reports exist, the sequence number will be set to 001. If saved reports do exist,
the sequence number is incremented by 1 for each newly saved report.

SQL Command Analysis Page 47

Update statistics before analysis

Specify FIRST if you want an automatic update statistics during command analysis for all
tables referenced by the application, if an update statistics has never been performed for the
table. Specify YES if you want an unconditional automatic update statistics during command
analysis for all tables referenced by the application. Specify NO if you do not want automatic
update statistics.

Update statistics for all columns

Specify YES in conjunction with Auto-Statistics FIRST or YES to perform an UPDATE
ALL STATISTICS. NO will update the statistics for the indexing table columns only.

Delayed analysis by userid

If you do not want to analyze your program interactively but in "server mode", specify the
name of the userid running the SQL/CA analysis server facility. After analysis the report is
returned to your virtual reader with a filetype of 'SQLCA'. Eventual error messages issued
to the virtual console of the server during analysis, will be found in a reader entry with
filetype 'SQLCACON'. When you request server-mode analysis, other processing options do
not apply, except for the DB2 connection parameters database, userid and password. The
analysis server always uses the default processing options from the SQLCA OPTIONS file.
The report EDIT option is always reset during batch processing.

Copy analysis report to userid

Specify "userid" if you want to send a copy of your analysis report to another user when
analysis completes. The option has a different meaning when server-mode analysis is
requested. In this case the analysis report is sent to "userid" and the user requesting analysis
does not receive the report.

Copy source extract to userid

If specified, a copy of the extract and the hostvar files is sent to the named userid. This userid
may then request analysis for your application.

Page 48 SQL Command Analysis

Connect to database

Specify the name of the DB2 database to be connected before analysis starts. If none is
specified, analysis is done in the currently connected database.

as SQL user

Specify the DB2 userid to be connected before analysis starts. If not specified, analysis is
done under the default userid (your VM userid).

If server-mode analysis has been requested, analysis is done under the default userid of the
server machine. If you wish connection of another userid, that userid and its corresponding
password have to be specified here, even if it is your own userid.

with password

Specify the password for the userid named above. This argument is required if connection
of a given DB2 user has been requested.

SQL Command Analysis Page 49

 When printing a process, CSP does not print the process object (the SQL row definition) and the CSP8

working storage. Both may be needed by SQL/CA during analysis.

4.3.2 CSP application analysis

The function screen allows to designate the CSP application to be analyzed and to specify the
non-default analysis processing options.

4.3.2.1 CSP application name

Enter the name of the CSP application to be analyzed. Unless your installation modified the
SQL/CA CSP invocation EXEC, that application must reside on your primary read/write
MSL. SQL/CA invokes CSP with an EZECIN command file and requests a print of the
named application. As a rule, analysis of applications should be requested. Although analysis
of single CSP processes is provided for, analysis results for processes may be less accurate.8

SQL/CA extracts all SQL processes from the CSP application and stores them into a CMS
file named <applicationname CSPAPPL> on your A-disk. It is possible to analyze this file
later on, using the compiled application analysis option. This may be useful if you want to
experiment with alternative SQL command specifications, without altering the CSP
processes.

4.3.2.2 CSP invocation EXEC name

If your installation did setup an alternative interface between SQL/CA and CSP, enter the
name of the corresponding CMS EXEC here. The name you enter will be saved as a global
CMS variable and will be presented the next time CSP analysis is requested. To use the
default CSP interface, specify a blank name or SQLCACSP.

4.3.2.3 Additional processing options

The following fields on the screen allow to specify analysis processing options. The default
options (as stored in the SQL/CA system OPTIONS file) are displayed and may be
overridden for the current run.

These options are identical to the options specified when analysing a CMS source program.
Please refer to the paragraph Additional processing options on page 46.

Page 50 SQL Command Analysis

4.3.3 REXX/SQL program analysis

SQL/CA provides for the analysis of REXX/SQL PREP (dynamic) and XPREP (extended
dynamic) requests.

Analyzing REXX/SQL programs presents a typical problem, because REXX EXECs usually
build the SQL command during execution before issuing the PREP or XPREP commands.
Therefore, the SQLCA/REXX support will execute the named EXEC file, intercept the SQL
commands specified on the PREP and XPREP requests and store them into a CMS file for
analysis.

After choosing REXX analysis on the main menu, following screen is presented, allowing to
specify:

- EXEC name the CMS filename of the REXX program to analyze (the filetype EXEC and
the filemode are implied)

- EXEC args the invocation parameters of the EXEC, if any

Your EXEC is then executed and its SQL commands intercepted. After interception, following
screen is presented.

4.3.3.1 RXSQL filename

The name of the CMS file built by SQLCA/REXX is presented on the option screen as
"exec_name RXSQL" and should not be modified.

4.3.3.2 Additional processing options

The following fields on the screen allow to specify analysis processing options. The default
options (as stored in the SQL/CA system OPTIONS file) are displayed and may be
overridden for the current run.

These options are identical to the options specified when analysing a CMS source program.
Please refer to the paragraph Additional processing options on page 46.

SQL Command Analysis Page 51

4.3.4 NATURAL application analysis

After choosing NATURAL analysis on the main menu, a screen is presented that allows to
specify:

Library name

Specify the name of the Natural library where the program resides. Your latest library
specification will be kept by SQL/CA in a CMS global variable and presented as the default
library, the next time you request program analysis.

Application name

Specify the name of the Natural application.

SQL/CA extracts the Natural application into a CMS file and presents the following panel.

4.3.4.1 NATURAL filename

The name of the CMS file built by SQL/CA is presented on the option screen as
"program_name NATURAL" and should not be modified.

4.3.4.2 Additional processing options

The following fields on the screen allow to specify analysis processing options. The default
options (as stored in the SQL/CA system OPTIONS file) are displayed and may be
overridden for the current run.

These options are identical to the options specified when analysing a CMS source program.
Please refer to the paragraph Additional processing options on page 46.

Page 52 SQL Command Analysis

4.3.4.3 Technical Notes

1. To perform analysis of NATURAL applications, SQL/CA obtains the application source
by means of a NATURAL UNLOAD command and the application's SQL by means of
a CREATE DBRM request.

2. For better readability, SQL/CA replaces the host variable names (:Vxxxyyyy) generated
by the CREATE DBRM function with the name of the corresponding variables in the
source application. Since analysis is mainly concerned with examination of the command
predicates, name substitution occurs in the predicate only, that is, in the command
section following the SQL clause WHERE (SQL SELECT/UPDATE/DELETE) or the
NATURAL clause WITH (NATURAL FIND).

3. During command analysis a file called <program_name ASSEMBLE> is created on your
A-disk. This file contains all SQL commands in the application, with the corresponding
NATURAL command inserted as comments. This ASSEMBLE file can be used as input
for subsequent command analysis (if you wish to experiment with the SQL without
altering the NATURAL source). It also shows what SQL is generated by your
NATURAL commands.

SQL Command Analysis Page 53

4.3.5 SQL query analysis

On the function screen, name the stored ISQL or QMF query to be analyzed. SQL/CA will access
the named query on the ISQL or QMF query table and extract all SQL commands that can be
analyzed.

A list of all variable symbols (symbols starting with &) appearing in the query is then presented
and you may assign substitution values for each variable. This allows to analyze the command
using realistic predicate values. If a substitution value is not assigned, the name of the variable
symbol will be used as its value. This however may bias the analysis results and is generally not
recommendable.

The analyzable SQL commands are stored into a CMS file named <query_name
query_processor> and analysis continues as for a CMS source program, as described on page
43.

4.3.5.1 Name of the query processor

Specify ISQL or QMF.
Default is ISQL.

4.3.5.2 Name of the query owner

Specify the name of the owner (creator) of the stored query that you want to analyze.
If not specified, the current DB2 userid is taken as the owner.

4.3.5.3 Name of the query

Specify the name of the stored query that you want to analyze.

4.3.5.4 Connect parameters

Specify the databasename, DB2 userid (or alias) and password to be used for analyzing the
query.

Note: All the above parameters, except "name of query", are stored by SQL/CA as global
CMS variables, lasting across CMS sessions. Your latest parameter assignments will
be re-displayed, the next time query analysis is requested.

Page 54 SQL Command Analysis

4.3.6 Package analysis

The function screen will request the name of the DB2 package to be analyzed and the non-default
analysis processing options.

4.3.6.1 Package name to analyze

Enter the creator of the package and the name of the package. The package should reside in
the currently connected database or in the database whose connection is requested in the
Connect to Database option described on page 48. The current DB2 userid or the userid
connected by the corresponding processing option, determines whether the package can be
analyzed. Unless you have DBA authority, you can analyze only packages that you own.

Both package creator and package name can be generic (using the DB2 conventions). If a
generic package name is used, multiple packages will be analyzed in the same run. In such
cases, a single analysis report file (filetype SQLCA) will be created. The name of the
analysis report will be taken from the first package name effectively analyzed.

4.3.6.2 Additional processing options

The following fields on the screen allow to specify analysis processing options. The default
options (as stored in the SQL/CA system OPTIONS file) are displayed and may be
overridden for the current run.

These options are identical to the options specified when analysing a CMS source program.
Please refer to the paragraph Additional processing options on page 46.

SQL Command Analysis Page 55

Notes

1. To analyze multiple packages in a single SQL/CA run, you can also use the
SQLCAGPA utility program, which is described on page 82.

2. Packages generated by CSP do not contain host variable names but parameter markers.
Therefore, SQL/CA cannot perform those text analysis procedures that examine host
variable specifications, because the datatype and length of the hostvars cannot be derived
from the package. The source text of the CSP application is required for full analysis.

3. Since DB2 version 3.2, all host variable names in an package are replaced with the :H
host variable marker during preprocessing. SQL/CA replaces the :H marker with an
internally generated name in the format TTTLLSS, where

TTT = When datatype equals

CHAR CHARACTER

VCHAR VARCHAR

LVCHAR LONG VARCHAR

GRAPH GRAPHIC

VGRAPH VARGRAPHIC

LVGRAPH LONG VARGRAPHIC

DEC DECIMAL

FLOAT FLOAT

INT INTEGER

SMINT SMALL INTEGER

LL is the length of the host variable (if not float, integer or smallint)
SS is the precision of a decimal hostvar

For example:

CHAR3 represents a CHAR(3)
DEC70 represents a DECIMAL(7,0)

Page 56 SQL Command Analysis

4.3.7 Interactive command analysis

This function allows to enter an SQL command on the terminal for analysis.

Enter the SQL command to be analyzed. SQL/CA appends a trailing ; to conform to SQLDBSU
format and stores the command into a CMS file named "INTACT COMMAND" on your A-disk.
The CMS source program analysis screen is then presented with the filename filled in (see page
43).

The INTACT COMMAND file is retained after analysis and may be updated and re-submitted
for analysis.

SQL Command Analysis Page 57

4.3.8 Table oriented analysis

When this option is selected, a selection screen is presented for specifying the following
arguments:

Table Creator / Table Name

Specify the creator and the name of the table that should be used as base for table oriented
analysis. That is: all DB2 packages that contain a reference to this tablename, will be analyzed
in a single run. This table name must be specific. Generic names cannot be used.

Package Creator / Package Name

By default, all DB2 packages are inspected for dependency on the above table name. If you want
to limit that search to a given subset of packages, name the subset by specifying a creator and
package name. Both the creator and the package name can be generic. Follow the DB2
conventions for stating generic names.

Connect parameters

Specify the databasename, DB2 userid (or alias) and password to be used for analyzing the query.

Usage Notes

- Table oriented analysis usually requires the DBA privilege, since unrestricted access to all
DB2 packages is necessary.

- All selected package statements are stored into a CMS file called SQLCAPUO ACCMOD,
which is subsequently submitted for analysis. Consequently, the analysis report will be
named SQLCAPUO SQLCA.

Page 58 SQL Command Analysis

4.3.9 Editing the analysis report

After analysis, the analysis report is displayed using XEDIT and a number of XEDIT macros,
provided with SQL/CA. During report editing, following Pfkey-based functions are available:

PF1 Displays the SQL/CA glossary. If the cursor is pointing to an analysis warning
message, the glossary is positioned to the description of that warning.

PF2 Locates the next analysis warning on the current page.

PF3 Quits the report editor.

PF4 Positions to the begin of the current SQL command being analyzed.

PF5 Positions to the begin of the current SQL subquery, if the command contains
subqueries.

PF6 Locates the next analysis warning on the following page.

PF7 Displays the previous report page.

PF8 Displays the next report page.

PF9 Switches to condensed/non-condensed report format, in a flip-flop manner.

PF10 Locates the next SQL command.

Notes:

- When the SQL/CA glossary is being displayed, use the standard XEDIT PFkeys to browse
through the document. Press PF3 to exit the glossary. Alternatively, use the X XEDIT
command to switch between the glossary and the analysis report.

- When the condensed report format has been chosen (using PF9), following items of the
report are displayed:

a. the command text
b. the SQL command cost value, if the latter exceeds 1000
c. all severity 2 and 3 warnings issued for the command
d. the entire Predicate Analysis Warnings paragraph

- To return to the non-condensed report, press PF9 again.

- The latest "condens" choice will be used when editing future analysis reports.

SQL Command Analysis Page 59

4.3.10 Summarizing the analysis report

The SQLCASUM EXEC can be used to create a summary report from an existing analysis
report. Summarizing may be convenient before printing a large analysis report.

The summary report will contain:

- the SQL command text
- the SQL command cost
- the command access path
- all SQL/CA warnings issued

In addition, SQLCASUM can be used to extract only those SQL commands that exceed a
specified SQL cost.

Invocation:

SQLCASUM filename [cost]

where:

- filename is the name of the report to summarize (<filename> SQLCA)
- cost is an optional numerical value; if specified, only the SQL commands greater than or

equal to the specified cost will be included in the summary report

The summary report will be written on the A-disk as <filename> SQLCASUM.

Page 60 SQL Command Analysis

4.3.11 Printing the analysis report

The analysis request is printed automatically, when you specify one of the print options on the
analysis request screen.

You can use the CMS PRINT command to print an existing analysis report (which is a CMS file
with filetype SQLCA.)

You can print an analysis report in condensed format by typing SQLCAPRD on a filelist or by
issuing <SQLCAPRD filename SQLCA> on the CMS prompt.

SQL Command Analysis Page 61

4.3.12 Waiting on analysis reports in server mode

When you send an analysis request to an analysis server and the REPORTWAIT YES option has
been enabled in the system processing options file (described on page 129), you may wait for the
analysis report. After sending the request, you will get the message:

Waiting for analysis report ...
To interrupt the wait, press ENTER.

If you wait for the report, it will be edited (and printed if requested), as soon as it is returned to
you by the server. Press the ENTER key to end waiting.

Note In order to use the wait facility, your VM system must include the CMS WAKEUP
command, which is part of the CMS Utilities.

Page 62 SQL Command Analysis

4.3.13 Query the SQL/CA archive tables

 * Query SQL/CA Archive Tables *

 Report by command cost : 1
 Report by access type : 2
 Report by access method : 3
 Report by SQL/CA warning : 4
 Report by SQL command : 5
 Report subqueries : 6
 Report by response size : 7
 Report by object reference : 8
 Report by application name : 9

 Report option : _

 PF1 = Help PF3 = Quit

SQL Command Analysis Page 63

This option of the Analysis Menu allows to execute a number of queries on the SQL/CA analysis
archive tables. These queries are executed as ISQL routines.

When selected, archive query will request a query option which should be entered as

1 to query by command cost
2 to query by access type (relational scan, index scan, view materialization)
3 to query by access method (join, sort)
4 to query by SQL/CA analysis warning
5 to query by SQL command code (SELECT, UPDATE, INSERT ..)
6 to query commands containing subqueries
7 to query by response size
8 to query by command object names (tables, indexes, columns)

The screenfield "report applications named" is common to all archive queries and restricts archive
searching to the named application(s). The application name is generic by default, that is, all
applications beginning with your name specification will be processed. There is one exception
to this rule: if a query for all SQL/CA warnings issued for an application is requested (using
query option 4, with the warning code set to 0) and a generic name is required, it must be stated
explicitly, using the % marker.

If no application name is entered, all application commands present in the archive tables will be
searched, which will obviously increase archive query response time.

To terminate the ISQL routine doing the archive access, press PF3. All other ISQL PFkey
assignments do apply.

Page 64 SQL Command Analysis

4.3.13.1 Query by Command Cost

Enter a non-fractional numeric value on the option menu. All commands with an execution
cost greater than or equal to this value will be reported.

SQL Command Analysis Page 65

4.3.13.2 Query by Access Type

On the option menu enter:

X to query all commands executed by selective index-only scan
Y to query all commands executed by non-selective index-only scan
I to query all commands executed by selective index scan
W to query all commands executed by non-selective index scan
R to query all commands executed by DBspace scan
L to query the commands for which view materialization (DB2 version 3) will be

performed

Note:

- the access types (X,Y,I,W,R) are listed above in decreasing order of access performance,
'selective index-only scan' being the best and 'DBspace scan' the worst access.

- index-only scans are detected only when analysis has been done using DB2 version 3.4
or later.

Page 66 SQL Command Analysis

4.3.13.3 Query by Access Method

On the option menu enter:

1 to query the commands performing a nested loop JOIN
2 to query the commands performing a merge scan JOIN
3 to query the commands for which an additional sort plan will be executed. If an

ORDERing or GROUPing clause is executed implicitly using the index order, the
command will not appear in this query.

SQL Command Analysis Page 67

4.3.13.4 Query by SQL/CA Warning

When asked for "SQL/CA warning code", enter 0 to obtain for the named application(s), a
list of all SQL/CA warnings issued during text analysis. Contrarily to other query options,
where a generic application name is the default, you must enter a generic name, if multiple
applications should be reported.

Alternatively, enter a message class code between 1 and 24 as "SQL/CA warning code", if
you wish to obtain all SQL commands in the specified application(s) for which the particular
warning has been issued. Following is a list of the SQL/CA warning class codes and their
meaning:

1 expression on indexing column used
2 data type incompatibility detected
3 data length incompatibility detected
4 data precision incompatibility detected
5 data scale incompatibility detected
6 indicator used with NOT NULL column
7 logical connector OR used
8 logical connector NOT used
9 operator used is no index keymatching candidate
10 operator used is not sargable
11 default filter factor used in predicate
12 range predicate used with host variable
13 plan index columns not or not completely specified in predicate
14 no indexing columns used in predicate at all
15 join columns have mismatching datatype
16 missing search condition in join command
17 indexing columns updated by command
18 expression residual due to mismatching datatype
19 expression residual due to mismatching precision/scale
20 no indexes exist for the table
21 no highly clustered indexes exist for the table
22 table index created using a back-level DB2 release
23 materialization of view performed
24 child block executed at each open of its parent block
25 suboptimal range operator used instead of BETWEEN

Page 68 SQL Command Analysis

Package : SQLDBA.ARIDSQL Line nr 7 ARCHQNO 804
Database=DBTEST Userid=SQLAF
Timestamp=1996-09-03-12.43.30.192995

SELECT CREATOR , TNAME FROM SYSTEM.SYSCATALOG WHERE DBSPACENO =
:DBSPNO AND TABLETYPE = 'R'

 W14: No index columns used in predicate.
 W21: No highly clustered indexes exist for table.

Press ENTER to continue; type END to terminate.

The query shows the first 7 lines of the SQL commands concerned. To get the warnings in
full detail, it may be necessary to re-analyze the application.

SQL Command Analysis Page 69

4.3.13.5 Query by SQL Command Code

On the option menu enter SELECT, INSERT, UPDATE or DELETE to obtain a report of
the SQL commands in the designated application(s) containing the specified command code.
A DECLARE CURSOR for SELECT or INSERT is treated as SELECT or INSERT.

Page 70 SQL Command Analysis

4.3.13.6 Query by Subqueries

This query shows all SQL commands containing subqueries. The only parameter requested
is the [generic] name of the application(s) to be examined.

SQL Command Analysis Page 71

4.3.13.7 Query by Response Size

On the command menu enter a non-fractional numeric value. The query will show all SQL
commands with an estimated response set equal to or exceeding this value.

The query uses the 'ROWCOUNT' column in the Explain Structure table. This column
indicates the estimated number of rows that will be returned to the query as a result of its
predicate specifications.

Page 72 SQL Command Analysis

4.3.13.8 Query by Command Object Names

When selected, the query option will request following parameters:

- reference type: specify

- T to obtain the SQL commands using a given (generic) table name
- I to obtain the SQL commands using a given (generic) index name (as shown in

the explain plan)
- C to obtain the SQL commands using a given (generic) table column name in their

predicate (as shown in the explain reference table)

- name of the table creator (type T and C) or the index creator (type I)
- name of the table (type T and C) or index (type I)
- name of the table column (type C)

The creator name and the name of the table, index or column may be a generic SQL name.
If a given name is omitted, it will be set to '%', causing all names to be examined.

The sample report shows the applications referring to the table SQLDBA.SQLCA_INDEX.

File: SQLCACOL ISQLQRY A Line nr 1 SQLDBA SQLCA_INDEX
File: SQLCACST ISQLQRY A Line nr 1 SQLDBA SQLCA_INDEX
File: SQLCAWNG ISQLQRY A Line nr 1 SQLDBA SQLCA_INDEX

SQL Command Analysis Page 73

4.3.13.9 Query by Application name

This query reports the archive entries for a given application. The application name specified
is automatically considered as generic.

Page 74 SQL Command Analysis

4.3.14 SQL/CA utility menu

 * SQL Command Analysis Utility Menu *

 Print Analysis Glossary : 1
 Edit Analysis Glossary : 2
 Create Explain Tables : 3
 Import Archived SQL Command : 4
 Connect another Database : 5

 Select Menu Option : _

 PF1 = Help PF3 = Quit

The utility menu allows to select one of the following functions, which are selected by entering
the corresponding numeric code.

 1 Print the SQL/CA glossary.

2 Edit the SQL/CA glossary.
3 Create the DB2 explain tables.
4 Import an archived query.
5 Connect another database.

4.3.15 Print the SQL/CA glossary

This menu option prints the Glossary using the current spool characteristics of the virtual printer.

4.3.16 Edit the SQL/CA glossary

This menu option displays the Glossary using XEDIT and the SQL/CA XEDIT profile. The same
function can be invoked when viewing the analysis report by pressing PF1.

SQL Command Analysis Page 75

4.3.17 Create the DB2 EXPLAIN tables

The SQL EXPLAIN command, issued during analysis, requires 4 explain tables which can be
created using this menu function.

The function will request:

- The name of the Dbspace where the explain tables should be created. If you have a private
DBspace, leave the name blank, which will create the explain tables in your private DBspace.
Else, enter the name of the public DBspace where the tables should be created.

- The creator name for the explain tables, which defaults to your VM-id. Using this option
allows you to create explain tables for other people, provided you have the DB2 authority
to do so.

The function issues a DROP TABLE followed by a CREATE TABLE for the 4 explain tables.
When an error is detected by DBS, the DBS listing is displayed on the terminal.

Notes:

- The explain tables should be reserved for exclusive use by SQL/CA. It is not possible to keep
user explain output in these tables, since SQL/CA deletes all explain table rows before
starting analysis.

- The create explain table function is DB2 release sensitive. If it is executed under DB2 3.4
and above, the explain tables will be created in the extended format.

- For performance reasons, you should provide a small dedicated DBspace for the explain
tables and not create indexes on them, since they are best accessed by DBspace scan.

4.3.18 Import an archived query

Each archived SQL command receives an archive query number when stored in the archive
tables. This query number is shown on the analysis report and during archive query. To import
a command from the archive, enter its query number when asked. A CMS file named
"ARCHQNO <query number>" will be created on your A-disk. That file will then be submitted
to SQL/CA for analysis, using the compiled application analysis function described on page 43.

4.3.19 Connect another database

This function allows to permanently connect another database. The function will request the
name of the desired database and issue an SQLINIT to that database.

Page 76 SQL Command Analysis

4.4 Invoking command analysis at the CMS prompt

4.4.1 Program Command Analysis

Command analysis can be invoked for an application program stored in a CMS file, by typing
SQLCA followed by the CMS filename, filetype and filemode, if the latter is not 'A'.

For example: SQLCA XYZ PLIOPT

The CMS Source Program analysis screen is then presented with the filename filled in. You may
eventually change processing options and start analysis by pressing ENTER. (For a description
of the processing options please refer to the paragraph Additional processing options on page
46.)

4.4.2 Analysis Report Editing

You may edit (with the SQL/CA XEDIT profile) an existing analysis report for a given
application XYZ by typing the CMS command:

SQLCA XYZ SQLCA

SQL Command Analysis Page 77

4.5 Invoking command analysis from XEDIT

When you are editing a CMS source program using XEDIT, you may invoke SQL Command
Analysis by entering the XEDIT subcommand SQLCAP.

The CMS Source Program analysis screen is then presented with the filename filled in. You may
eventually change processing options and start analysis by pressing ENTER. (For a description of
the processing options please refer to the paragraph Additional processing options on page 46.)

When analysis completes, the analysis report is edited as a new file in the XEDIT ring. This allows
you to switch between the analysis report and your source program using XEDIT commands.

Please note that changes to the source program should be saved (written to the disk file) before
invoking command analysis, which reads the source file from disk.

Page 78 SQL Command Analysis

4.6 Using the SQLCA command on a CMS filelist

4.6.1 Program Command Analysis

Command analysis can also be invoked for a program appearing on a CMS Filelist, by typing
SQLCA on the corresponding filelist line. The CMS Source Program analysis screen is then
presented with the filename filled in. You may eventually change processing options and start
analysis by pressing ENTER. (For a description of the processing options please refer to the
paragraph Additional processing options on page 46.)

4.6.2 Analysis Report Editing

When typing SQLCA on a Filelist line for an analysis report (filetype = SQLCA), the SQL/CA
report will be edited using the SQL/CA XEDIT profile.

SQL Command Analysis Page 79

 All SQL/CA components execute as CMS nucleus extensions. Therefore, the SQLCAX EXEC may9

be invoked from a program executing in the CMS User Area.

4.7 Using the SQLCAX EXEC

By invoking the SQLCAX EXEC, an application EXEC may initiate SQL/CA processing for a single
source program, stored in a CMS file. 9

The invocation syntax of the SQLCAX EXEC is as follows:

SQLCAX FN FT FM
'NONE'
[ALLSTAT { YES | NO }]
[ARCHIVE { YES | NO }]
[AUTOSTAT { FIRST | YES | NO }]
[CONDB database]
[CONUSR userid]
[CONPSW password]
[COPY { * | userid }]
[DELAY { * | userid }]
[DEST { * | userid }]
[EDIT { YES | NO | W1 | W2 | W3 }]
[PRINT { YES | NO | W1 | W2 | W3 | SHORT }]
[SAVE { YES | NO }]
[UPCASE { YES | NO }]

FN FT FM

Name of the CMS source file to be analyzed.

'NONE'

Only used when fn ft fm is an unloaded DB2 package. In this case the package creator name
is specified.

ALLSTAT { YES | NO }

Specify YES in conjunction with AUTOSTAT FIRST|YES to force an UPDATE ALL
STATISTICS. ALLSTAT NO will update the statistics for the indexing table columns only.

ARCHIVE { YES | NO }

Specify YES if analysis results should be archived.

Page 80 SQL Command Analysis

AUTOSTAT { FIRST | YES | NO }

The AUTOSTAT option controls automatic statistics update during command analysis for
all tables referenced by the application.
Specify AUTOSTAT FIRST to request statistics, if never been issued for the table.
Specify AUTOSTAT YES to unconditionally update the statistics.
Specify AUTOSTAT NO to disable automatic update statistics.

CONDB database

Specify the name of the DB2 database to be connected before analysis starts. If not specified,
execution is in the currently connected database.

CONUSR userid

Specify the DB2 userid to be connected before analysis starts. If not specified, analysis is
done under the default userid (the VM userid).

CONPSW password

Specify the password for the userid named in CONUSR. This argument is required if
CONUSR is specified.

COPY userid

If a copy of the extract and the hostvar files is to be sent to the named VM userid or to the
nickname defined in a CMS "NAMES" file , specify that userid. Else specify *.

DELAY { userid | * }

If server-mode analysis is desired, specify the name of the VM userid or the CMS nickname
running the SQL/CA server. Specify * to request interactive analysis.

DEST { userid | * }

If a copy of the analysis report is to be sent to the named VM userid or to the CMS
nickname, specify the userid. Specify * to reset the option. If the DEST option is specified
in conjunction with DELAY, the analysis report will be sent to the DEST user and no report
will be available for the user requesting server-mode analysis.

SQL Command Analysis Page 81

EDIT { YES | NO | W1 | W2 | W3 }]

Specify YES if the analysis report should be XEDITed after analysis.

Specify NO if the report should not be edited.

Specify W1, W2 or W3 if the report should be edited after analysis warnings with a severity
code of 1, 2 or 3 respectively.

PRINT { YES | NO | W1 | W2 | W3 | SHORT}]

Specify YES if the analysis report should be printed after analysis using the current spool
options of the virtual printer.

Specify NO if the report should not be printed.

Specify W1, W2 or W3 if the report should be printed after analysis warnings with a severity
code of 1, 2 or 3 respectively.

Specify SHORT if the report should be printed in condensed format. A condensed report
contains the command text and the related warnings only. All other print options will print
the report in non-condensed format.

SAVE { YES | NO }

If an existing analysis report (<filename> SQLCA) for the application should be preserved,
specify YES. This will rename the existing report to a CMS file named <filename> SQLCA-
XXX, where XXX is a sequence number assigned by SQL/CA. If no saved reports exist, the
sequence number will be set to 001. If saved reports do exist, the sequence number is
incremented by 1 for each newly saved report.

UPCASE { YES | NO }

Specify YES in conjunction with PRINT YES to force uppercase translation for printer
devices without lowercase font.

Note

- Unless stated otherwise in the above argument description, the default analysis processing
options, as coded in the SQLCA OPTIONS file, will take effect if the corresponding arguments
have been omitted on the SQLCAX call.

- The SQLCAX EXEC sets a returncode of 0 if no warnings were produced during analysis. A
returncode of 4, 8 or 12 is presented if warnings of severity 1,2 resp. 3 were issued. A returncode
16 indicates that errors were detected during EXPLAIN (for instance due to incorrect SQL
command syntax).

Page 82 SQL Command Analysis

 The package analysis function of the SQL/CA menu also allows multiple package analysis by10

specifying a generic package name. However, all packages will be analyzed into a single analysis report.

4.8 Using the SQLCAGPA utility

The SQLCAGPA package analysis utility allows to analyze multiple packages in a single analysis
run. Each package analyzed will have its own analysis report file (filetype SQLCA).10

The SQLCAGPA command is entered at the CMS prompt and has the following syntax:

SQLCAGPA DATABASE n
CREATOR n
PACKAGE n
USER n
PASSWORD n

The default values for the command arguments are as follows:

DATABASE : default database
CREATOR : %
PACKAGE : %
USER / PASSWORD : default DB2 userid

The DELAY argument in the SQLCA OPTIONS file will determine whether interactive or server-
mode analysis is performed.

When analyzing a large number of packages, a considerable amount of space will be required on your
A-disk if interactive analysis is done, or in the VM reader spool if server-mode analysis is performed.

In server-mode analysis, the analyis reports will be returned as reader files. To get them on your A-
disk (filetype SQLCA), use the Retrieve function of the CMS RDRLIST command. To display the
analysis report using the SQL/CA macro, type the SQLCA command on the Filelist of the reports.

SQL Command Analysis Page 83

4.9 Stopping the SQL/CA server

The stop the analysis server, issue the command SMSG <servername> STOP.
On receipt of the command, the server will perform a CP LOGOFF when the current analysis request,
if any, has been completed. Non-processed requests remain in the server’s reader queue.

Note

The STOP command is available only when the WAKEUP command is available (WAKEUP is part
of the CMS Utilities feature).

Page 84 SQL Command Analysis

4.10 VM/CSP considerations

When analyzing a CSP application, SQL/CA invokes CSP with an EZECIN command file that
contains a print command for the named CSP application. The CSP invocation procedure is a REXX
EXEC, called SQLCACSP. SQLCACSP on its turn calls another EXEC, named SQLCACSI for
opening ('EXEC SQLCACSI OPEN') and closing ('EXEC SQLCACSI CLOSE') the CSP
environment. The SQLCACSI EXEC initiates a standard CSP environment by executing the IBM
EXEC's CSPDDLBL and USERDLBL on the CSPUSER 193 minidisk. This results in the definition
of a read/write MSL on the user's 503 minidisk. The standard CSP invocation procedure then allows
to analyze applications from that primary MSL. If you have a differently customized CSP
environment (with project MSL's for instance), you may have to alter the SQLCACSI EXEC, in
order to suit your CSP setup.

Alternatively, you can write a CMS EXEC which invokes a customized CSP environment. When a
user invokes CSP application analysis, the name of this EXEC can be entered as a function parameter
when performing CSP analysis.

Invocation EXEC entry values

When invoking the customized EXEC, SQL/CA passes 3 parameters:

- the filename and filetype of a CMS file built by SQL/CA; that file contains following
command: PRINT MEMBER(application_name);

- the name of the CSP application to be analyzed

Prior to invocation, SQL/CA has issued following VM commands:

CHANGE RDR CLASS S HOLD
SPOOL 00E * CLASS S CONT

Invocation EXEC exit values

On exit from the customized invocation EXEC, SQL/CA expects the listing of the
application to be analyzed in its reader or as a CMS file with filetype LISTING on minidisk
A.

SQL Command Analysis Page 85

4.11 VSE/CSP considerations

There is no explicit support for VSE/CSP in SQL/CA. If applications to be analyzed reside in a
VSE/CSP MSL, there are two solutions:

- If VM/CSP has been installed, the SQLCACSP EXEC may be customized to link to the VSE
minidisk containing the VSAM catalog and the CSP library. Normal VM/CMS facilities can be
used to achieve this.

- If VM/CSP has not been installed, the VSE/CSP application should be obtained by submitting
a VSE job to print the application into the reader of the virtual machine requesting analysis. A
skeleton job, named SQLCACSV EXEC, is provided with SQL/CA. You can use it as a base
for installing your own support.

Page 86 SQL Command Analysis

NATURAL_programname = 'NAT22'
NATURAL_userid = 'SAGDBA'
NATURAL_mdisk = '196'
NATURAL_mdisk_password = 'PASS196'
NATURAL_command_separator = ','

4.12 NATURAL considerations

NATURAL application analysis is controlled by the SQL/CA EXEC SQLCAM12.

Before starting analysis, an EXEC named SQLCANT0 is invoked for defining the following
NATURAL related global variables:

S NATURAL module name; if NATURAL is called by an exec, enter EXEC nnn as assignment
value

- the CMS userid, the virtual address and the password for the minidisk that contains the
NATURAL software material; if this minidisk is public, set the above 3 parameters to blank

- the NATURAL command separator (default is a comma)

Following default values for these variables are stored as REXX assignments at the beginning of
SQLCANT0. Change the assignments to meet your installation requirements.

SQL Command Analysis Page 87

5 Interpreting the analysis report

For each SQL command in the application program, following paragraphs are printed in the analysis
report.

5.1 Command Execution Structure by block and parent

SQL/CA formats the SQL command in such a way, that the execution structure for a multiple query
command becomes apparent. Each subquery is indented according to its nesting level within the
execution tree. The outer (first) query is printed at indent level 1; a subquery called from the outer
query is printed at indent level 2; a subquery called by another subquery is printed at the indent level
following that of its parent query. For each subquery, the query blocnumber (BLK) and the number
of the invoking parent block (Par) is provided.

Note that the execution hierarchy is derived by SQL/CA from the explain tables and that in some
cases the actual execution structure may differ from the source command structure. The DB2
optimizer may effectively execute some subqueries earlier, at the opening of an ancestor block, when
there is no correlation to the tables in the intermediate query block.

5.2 Structure of Referential Constraint Commands

A command modifying a table that is a member of a referential integrity constraint, generates
additional commands that enforce the integrity. A delete on a parent table for instance, will generate
delete or update commands for all its dependent tables. The execution structure of these internal
commands is provided by SQL/CA in separate paragraphs that are titled Structure of referential
constraint command, followed by the internal command number (1 to N). The text of the internal
command is derived from the EXPLAIN data.

Page 88 SQL Command Analysis

5.3 Command Cost Summary

The cost paragraph applies to the command as a whole. For a single query command, 2 cost estimates
are provided:

- Total Command Cost The query cost estimate from the explain table. The value is zero for
INSERT commands.

- ISQL like Cost (total_command_cost / 1000) + 1. Interactive SQL systems such as
ISQL present the Query Cost Estimate in this format.

For a multiple query command, following values are computed:

- Single_Cost The cost of a single execution of the query block, not including the cost
of the dependent and the ancestor blocks.

- Exec_Times The estimated number of invocations of a query from all its parent
blocks. Eventual multiple parents as well as their "ATOPEN" attribute
are taken into account. (The ATOPEN flag tells whether the subquery
is executed once or multiple times by its immediate parent block).

- Multi_Cost Single_Cost multiplied by Exec_Times.

- SQL_Cost The cost from the DB2 explain table i.e. the cost of the query plus the
cost of all its dependent blocks.

- Highest_Subquery_Cost The highest Multi_Cost found for a subquery in the command.
Performance tuning should concentrate on this subquery.

SQL Command Analysis Page 89

 See SQL/MF Integration on page 41.11

If our SQL/MF monitor program product has been installed and if the monitor tables are accessible during
analysis , following execution-time program statistics are included:11

N_Rows number of rows processed
DBSScall number of calls to the DBSS component
Buflook number of buffer lookups performed
Tot_IO number of I/O's or dataspace transfers performed
SQL_Cost effective command cost as TOT_IO + (DBSSCALL/3)

These statistics were recorded during the last execution of the application. They can be used to compare
the cost estimated by DB2/VM with the real execution cost.

Page 90 SQL Command Analysis

 In DB2 releases prior to 3.4, the same plannumber may occur more than once, if the primary12

command generates internal commands that enforce referential integrity.

5.4 Command Plan Summary

If the analyzed command has more than one row in the plan table, the plan summary is printed.

For each entry in the plan table, following data is provided:

- the query number starting from 1 up to the number of nested queries in the command
- the plan number within the query (1 to N)12

- the access descriptor for the plan entry

For primary plan entries, one of the following access descriptors is provided:

- scan of DBspace N for table N
- selective index[-only] scan of table N
- non-selective index[-only] scan of table N
- fully qualified index[-only] scan of table N
- literal based index[-only] scan of table N

For secondary plan entries, one of the following access descriptors is provided:

- nested loop join
- merge scan join
- sort at end of query

For join plans, the access path taken during join is also shown, using one of the primary plan
descriptors. For example: "Nested loop join using selective index scan of table N".

Each plan is described in full detail in the Command execution detail paragraph.

SQL Command Analysis Page 91

5.5 Command Execution Structure

The paragraph is printed for each subquery in the SQL command and provides following data
obtained from the DB2 explain tables:

Estimated number of rows processed ... out of ...

The ROWCOUNT column from the EXPLAIN table. It indicates the estimated number of rows
returned for the table(s) used in this command. SQL/CA computes the total number of table rows
from which the estimated number of rows is selected and prints this number following out of. For
join commands, this total counts the rows for all tables participating in the join.

Estimated global command filter factor

Represents the fraction of table rows estimated to satisfy the command predicate as

(estimated number of satisfying rows) / (sum of all rows of all tables accessed)

The filter value ranges from 0 to 1. The lower the value, the better the selectivity of the
command.

Estimated times predicate conditions satisfied

The TIMES column from the EXPLAIN table. It estimates the probability that the predicate
conditions of the command will be true. It also shows how many times eventual dependent blocks
will be executed. If the estimated value equals the number of table rows, SQL/CA assumes a
sequential table scan and issues a warning.

Estimated execution iteration by ancestor blocks

Using the TIMES column from the EXPLAIN Structure table for all parent blocks, SQL/CA
computes the total number of times this query block will actually be executed. The ATOPEN
attribute of each ancestor block is also taken into account. (The ATOPEN flag tells whether the
subquery is executed once or multiple times by its immediate parent block).

Block executed ... times by parent block ..

The TIMES column from the EXPLAIN Structure table. It estimates the number of times the
subquery is invoked by its immediate parent, which is represented by its blocknumber.

Page 92 SQL Command Analysis

5.6 Command Execution Detail

The following information is printed for each plan in the query. JOIN queries or commands
requesting a sort operation, will have more than one plan.

5.6.1 Plan Detail

The execution plan is detailled by providing the following items:

METHOD

The information is available for JOIN and sort plans only. It takes following values:

Merge scan JOIN

DB2 merges the response set obtained thus far with the new table to be joined in the
order of the join column and joins rows with matching columns. A sort operation
may be necessary to access the table to be merged in the required order. A merge
scan join may require work dataspace.

Nested loop JOIN

For each row of the response set obtained thus far, the new table to be joined is
searched for matching rows and the matching rows are joined. An index may be used
to access the new table.

Additional sort at end of query block

The plan executes a final sort operation in order to satisfy ORDER, GROUP or
DISTINCT command clauses.

SQL Command Analysis Page 93

ACCESS

Using scan of DBspace

Rows are accessed by scanning the named DBspace. Data belonging to other tables
in the same DBspace will also be scanned. SQL/CA adds the following
informations:

DBspace pages scanned

Provides the number of active pages in the scanned DBspace, that is the number
of pages that actually will be read.

DBspace scan productivity

If multiple tables share the scanned DBspace, the productivity value shows the
percentage of DBspace data scanned belonging to the table accessed in the plan.
For critical tables productivity should normally be 100%, that is, the table
should have its dedicated DBspace. Otherwise, a DBspace scan will imply
unnecessary I/O by reading pages of other tables and unproductive locks on
pages that contain rows belonging to other tables.

Fully-qualified index scan

The table will be accessed using all columns of the named unique index. The name
of the index and its columns are printed. The characteristics of the index are
specified as first or non-first, highly clustered or weakly clustered, unique or not
unique.

Fully-qualified index-only scan

The table will be accessed using all columns the named unique index. Moreover, all
selected data will be retrieved using the index, that is, data pages will not be
accessed. The name of the index and its columns are printed. The characteristics of
the index are specified as first or non-first, highly clustered or weakly clustered,
unique or not unique.

Fully-qualified index scan

The table will be accessed using all columns of the named unique index. The name
of the index and its columns are printed. The characteristics of the index are
specified as first or non-first, highly clustered or weakly clustered, unique or not
unique.

Page 94 SQL Command Analysis

Literal based index scan

The table will be accessed using the named index and literal values from an IN list.
The name of the index and its columns are printed. The characteristics of the index
are specified as first or non-first, highly clustered or weakly clustered, unique
or not unique.

Literal based index-only scan

The table will be accessed using the named index and with values from an IN list.
Moreover, all selected data will be retrieved using the index, that is, data pages will
not be accessed. The name of the index and its columns are printed. The
characteristics of the index are specified as first or non-first, highly clustered or
weakly clustered, unique or not unique.

Non-selective index only scan

The table will be accessed using the named index without key values, which means
that a sequential index scan will be performed. However, all selected data will be
retrieved using the index, that is, data pages will not be accessed. The name of the
index and its columns are printed. The characteristics of the index are specified as
first or non-first, highly clustered or weakly clustered, unique or not unique.

Selective index scan

The table will be accessed using the named index with specific key values. The
name of the index and its columns are printed. The characteristics of the index are
specified as first or non-first, highly clustered or weakly clustered, unique or not
unique.

Non-selective index scan

The table will be accessed using the named index without key values, which means
that a sequential index scan will be performed. Data pages may be accessed if the
predicate references columns that are not available in the index. The name of the
index and its columns are printed. The characteristics of the index are specified as
first or non-first, highly clustered or weakly clustered, unique or not unique.

Materialization of view

View materialization is a technique used by DB2 version 3 in order to remove
restrictions on the processing of views. The feature implies storing of intermediate
select results in internal tables. To access these intermediate results, indexed access
is never used by DB2. Hence the possibly negative performance implications of
view materialization.

SQL Command Analysis Page 95

Score

The access score is a value computed by SQL/CA in order to represent the efficiency
of the DB2 access path chosen. The higher the score, the better the path. One point
is added to the score each time one of the following conditions is true:

- index access is being performed
- fully-qualified index access is being performed
- index-only access is being performed
- selective index access is being performed
- index access is using a highly-clustered index
- index access is using a unique index

The highest score is achieved when all the above conditions are true. The highest
score is 6 (DB2 Version 3.4 and later) or 4 (DB2 versions before 3.4) The lowest
score is 0 and indicates a DBspace scan.

AW91 Data pages accessed for predicate and data

Data pages must be accessed to resolve the predicate and to retrieve data. If the
warning is not provided and the access is index-only, both predicate and data are
resolved using the index only. If the warning is not provided and the access is not
index-only, the predicate is resolved using the index and data pages are accessed to
retrieve data and predicate columns not available in the index.

Key-matching index columns: n out of m

The number of index keys (n) that have key-matching predicates used in an index
scan. The number of columns in the index is provided by m. If n < m, warning
AW92 is inserted.

No indexes for table

No indexes have been defined for the named table.

No highly clustered first index for table

Indexes do exist for the table, but none of them is highly clustered.

No unique indexes for table

The table has no unique indexes. This is a warning only, since the structure of the
data may be such that non-unique indexes are acceptable.

No indexes found created using current DB2 release

All indexes for the table were created using a backlevel DB2 release.

Page 96 SQL Command Analysis

 See the Glossary on page 133 for a definition of "new table".13

SORT

New table [not] sorted

The new table accessed in this command plan needs [does not need] to be sorted.13

New table sorted and duplicates removed

The new table accessed in this command plan needs to be sorted and duplicates to
be removed, for instance, in order to satisfy a DISTINCT request.

New table sorted for JOIN purposes

The new table accessed in this command plan needs to be sorted as part of a JOIN
plan.

New table sorted due to ORDER BY

The new table accessed in this command plan needs to be sorted to satisfy the
command's ORDER BY clause.

New table sorted due to GROUP BY

The new table accessed in this command plan needs to be sorted to satisfy the
command's GROUP BY clause.

Composite [not] sorted

When a command is performed in several steps, the DB2 term "composite" refers to
the response set obtained thus far, as the result of execution in previous steps. For
a join operation it is the "input" table. The composite had [not] to be sorted at the
initiation of the plan, for example, to prepare the composite for a merge scan join.

Composite sorted and duplicates removed

The composite has to be sorted and duplicates removed.

Composite sorted for JOIN purposes

The composite table accessed in this command plan needs to be sorted as part of a
JOIN plan.

SQL Command Analysis Page 97

Composite sorted due to ORDER BY

The composite table accessed in this command plan needs to be sorted to satisfy the
command's ORDER BY clause.

Composite sorted due to GROUP BY

The composite table accessed in this command plan needs to be sorted to satisfy the
command's GROUP BY clause.

Additional information provided for a JOIN

Number of rows in inner table: the number of rows in the table from which rows are
joined in the current plan (the new table). Not available if no statistics exist for the table.

Number of rows in outer table: the number of rows in the table to which the join is
done (the composite table). Not available if no statistics exist for the table.

The above number of rows represents the effective tablesize during the join, that is, local
non-join predicates are applied when computing the value.

Page 98 SQL Command Analysis

5.6.2 Column Reference Details

The table and columns intervening in the current command execution plan are obtained from the
DB2 EXPLAIN Reference table. For each column, following items are reported:

Filtering factor

For each column referenced in the command predicate, DB2 determines a filter factor, which
represents the fraction of table rows estimated to satisfy the predicate as:

estimated_number_of_rows / number_of_table_rows

The filter is a value between 0.0 and 1.0. The lower the value, the better the column's
selectivity. A filter factor of 1 means the column has no selectivity at all.

The filter factor depends on the distribution of data values for the column. A column having
a high number of unique values within the table, will have a good selectivity, that is, a small
filter factor. If an SQL command supplies a search value for such a column, the DB2
optimizer then knows that only a few number of rows will meet the condition and that the
response set will be small, which in turn affects the command execution cost.

Estimated table rows filtered

This value is obtained by multiplying the number of table rows by the above filter factor. It
shows how many table rows are estimated to be filtered through this column.

Sargable predicate associated with column

A sargable predicate is associated with this column. To receive the qualification:

- the column must be in a predicate that is connected by AND to the rest of the WHERE
clause, or be the only WHERE predicate

- the predicate in which the column appears must be in the format: "column operator
expression"

Sargable equi-JOIN predicate associated with column

The column appears in a join predicate using the = operator and the join predicate is sargable.

Appears in ORDER BY clause on position ..

The column is used on position .. of an ORDER BY clause.

Appears in GROUP BY clause on position ..

The column is used on position .. of a GROUP BY clause.

SQL Command Analysis Page 99

Updated by literal expression

The column appears in the SET clause of an UPDATE statement that updates the column
with a constant value.

Updated by column or expression

The column appears in the SET clause of an UPDATE statement that updates the column
with a column value or an expression

Resolved using index page

The column occurs in the plan index and is fixed-length. No data page must be accessed
when fetching this column.

Resolved using index and data page

The column occurs in the plan index but is VARCHAR or VARGRAPHIC. A data page must
be accessed when fetching this column.

Resolved using data page

The column is not in the plan index. A data page must be accessed when fetching this
column.

Page 100 SQL Command Analysis

 See the Glossary on page 133 for a definition of "sargable".14

5.6.3 Column Reference Details (DB2 versions before 3.4)

The table and columns intervening in the current command execution plan are obtained from the
DB2 EXPLAIN Reference table. For each column, following items are reported:

Filtering factor

For each column referenced in the command predicate, DB2 determines a filter factor, which
represents the fraction of table rows estimated to satisfy the predicate as:

estimated_number_of_rows / number_of_table_rows

The filter is a value between 0.0 and 1.0. The lower the value, the better the column's
selectivity. A filter factor of 1 means the column has no selectivity at all.

The filter factor depends on the distribution of data values for the column. A column having
a high number of unique values within the table, will have a good selectivity, that is, a small
filter factor. If an SQL command supplies a search value for such a column, the DB2
optimizer then knows that only a few number of rows will meet the condition and that the
response set will be small, which in turn affects the command execution cost.

Estimated table rows filtered

This value is obtained by multiplying the number of table rows by the above filter factor. It
shows how many table rows are estimated to be filtered through this column.

Appears in WHERE clause such that index can be used

A column receives the above qualification

- when it is the only predicate in the WHERE clause
- when it appears in a sargable predicate connected by means of AND with the remainder14

of the WHERE clause

Used as a JOIN column

The column appears in a join predicate.

SQL Command Analysis Page 101

Column plausible for use in index scan

The qualification is given for a column if both the percentage of DBspace used by the table
and the count of distinct values for the column are small. In these circumstances an index
scan, even using a non-clustered index, may be preferable to a DBspace scan.

Updated by literal expression

The column appears in the SET clause of an UPDATE statement which updates the column
with a constant value.

Updated by non-literal expression

The column appears in the SET clause of an UPDATE statement which updates the column
with a column value or an expression.

Appears in ORDER BY clause on position ..

The column is used on position .. of an ORDER BY clause.

Appears in GROUP BY clause on position ..

The column is used on position .. of a GROUP BY clause.

Predicate column resolved using index page

The predicate column occurs in the plan index and is fixed-length. No data page must be
accessed for resolving the predicate search condition on this column.

Predicate column resolved using index and data page

The predicate column occurs in the plan index but is VARCHAR or VARGRAPHIC. The
data page must be accessed for resolving the predicate search condition on this column.

Predicate column resolved using data page

The predicate column is not in the plan index. The data page must be accessed for resolving
the predicate search condition on this column.

Page 102 SQL Command Analysis

5.7 Predicate Analysis Warnings

Predicate analysis warnings are issued by the Text Analysis component of SQL/CA. They all have
a message number starting with AW followed by a message code. Please refer to page 149 for a
detailled description of the warning messages.

Unless the warning applies to the SQL command as a whole, the warning will be preceded by the part
of the command predicate that is causing the warning.

SQL Command Analysis Page 103

6 SQL/CA batch facility

To start the batch facility in a disconnected server machine, the SQLCABAT EXEC should be called
(usually from the PROFILE EXEC). The SQLCABAT EXEC has following syntax:

SQLCABAT

analysis_starttime
statistics_starttime
statistics_control_filename
statistics_control_filetype
statistics_control_filemode
[statistics_stoptime]

ANALYSIS_STARTTIME:

The time at which SQL/CA analysis requests forwarded by online users, should be processed, in the
format HH:MM[:SS].

If no time limit for analysis is required, specify 00:00. This will ensure that analysis requests are
processed as soon as they arrive.

If no batch command analysis should be performed, specify NONE.

STATISTICS_STARTTIME:

The time at which SQL/CA automatic statistics updating and/or program monitoring should start, in the
format HH:MM[:SS]. When that time has been reached, the EXEC will issue the EXEC SQLCABAS
command with the name of the statistics control file. When execution of the program SQLCABAS termi-
nates, SQLCABAT resumes the "wait for a user analysis request" sequence (unless the analysis time has
been set to "NONE").

Notes

- If the statistics_starttime is greater than the current time when the SQLCABAT command is issued,
the starttime is assumed to be in the next day.

- If no time limit for statistics is provided, specify 00:00. This will start statistics rightaway.

- If automatic statistics should not be performed, the argument should be set to NONE.

STATISTICS_CONTROL_FILENAME, -FILETYPE, -FILEMODE:

If a statistics starttime has been specified, specify the name of the CMS file containing the statistics
control statements, as described on page 109 and following. Please note that filename, filetype and
filemode are all required parameters.

Page 104 SQL Command Analysis

STATISTICS_STOPTIME:

The time at which automatic statistics updating and/or program monitoring should stop, in the format
HH:MM[:SS]. When that time has been reached, statistics will terminate after processing of the current
control command.

The stoptime may also be specified as a duration, expressed as +HH:MM. The effective stoptime is
calculated as (start_time + duration), unless starttime equals 00:00, in which case the stoptime is
calculated as (current_time + duration).

If stoptime is omitted, statistics terminate at the end of the control file.

Note

- If online users do not specify a userid when sending an analysis request, the server processes the
request using his own default DB2 userid. In this case that userid should usually have DBA authority
to be able to successfully issue the EXPLAIN command for tables it does not own.

- The batch facility always uses the default processing options from the SQL/CA OPTIONS file. The
report EDIT option however is always reset during batch processing.

- All the above times may be specified as HH:MM:SS or as HH:MM.

Examples

EXEC SQLCABAT 00:00 20:00 SQLCABAS CONTROL1 A 23:00

Requests immediate processing of analysis requests and start auto-statistics at 8 p.m. using the control
file SQLCABAS CONTROL1. Statistics terminate at 11 p.m. or at the end of the control file, whichever
event occurs first.

EXEC SQLCABAT NONE 00:00 SQLCABAS CONTROL1 A +03:00

Do not provide analysis server facilities. Start statistics immediately and stop 3 hours later or at the end
of the control file.

SQL Command Analysis Page 105

7 Analysis requests issued from non-VM environments

In a VM environment, the SQL/CA menu handles the forwarding of the analysis request to the analysis
server. CMS SENDFILE (and RSCS) is used to send the source file.

Analysis requests may also be issued from non-VM environments that are capable of a storing a source
file into the reader queue of the VM server machine.

The source file forwarded should be sent with spool class A and be identified in the VM reader queue by
a CMS-like filename and filetype (as is achieved when issuing the VM CLOSE command with the
NAME parameter). The filename is the name of the source program and the filetype indicates the
language of the program (COBOL, PLIOPT etc).

If the server should perform analysis under a database or DB2 userid other than its own, an additional
control file must be forwarded before the source file. That control file must be identified by the filename
of the source program and a filetype of SQLCACTL.

The control file consists of 1 or 3 records, containing:

- the name of the database to be connected during analysis
- the name of the DB2 userid to be connected during analysis
- the password of the above DB2 userid

If one record only is supplied, it is assumed to be the databasename and analysis will be performed using
the server's DB2 userid.

When analysis is complete, the analysis report is returned by the server to the requestor using CMS
SENDFILE (and RSCS). The analysis report is a file, identified by the original filename and a filetype
of SQLCA. If errors occurred during analysis, a second file with filetype SQLCACON may also be
returned. Facilities of the non-VM guest should be used to retrieve the returned file(s).

Page 106 SQL Command Analysis

SQL Command Analysis Page 107

8 SQL/CA program monitoring facility

The program monitoring facility is implemented by the SQLCABAS program, described in the next
chapter. The facility is governed by the MONITOR command, which is included in the SQLCABAS
control file among the other commands, described below. The monitoring report is sent to the virtual
printer.

Note:

- The program monitoring facility relies on the SQL/CA archiving facility; those tables should have
been created during SQL/CA installation.

- The facility allows to obtain a regular and automated command analysis for all the designated
packages. The results of analysis are stored in the archive tables and analysis reports are produced.

- Program monitoring should be done under a DB2 userid that has the DBA privilege.

Page 108 SQL Command Analysis

SQL Command Analysis Page 109

9 SQL/CA automatic table statistics facility

The SQLCABAS program implements the SQL/CA auto-statistics and the program monitoring
facilities. It is usually called from the SQLCABAT EXEC described in chapter 4. It can also be invoked
by any user having DBA authority, by issuing the command EXEC SQLCABAS.

The SQLCABAS auto-statistics facility is governed by a control file whose name is specified in CMS
format (filename, filetype, filemode) when issuing the SQLCABAS command.

The control file should be a fixed or varying length CMS file, with a recordlength not exceeding 512
characters. It is processed sequentially and SQLCABAS processing terminates at the end of the control
file.

SQLCABAS issues informatory messages, such as the current table characteristics after update statistics,
to the virtual console. The console should be spooled to a user or printer in order to retrieve these
messages. SQLCABAS closes the console at the end of control file processing.

Following control statements are recognized by SQLCABAS. All of them are free format, each command
consisting of a number of operand words separated by a variable number of blanks. No end of command
indicator is necessary and the order of the operand words within the command is not significant.
However, each command must be fully contained on one line. Full blank lines in the control file are
ignored.

Page 110 SQL Command Analysis

9.1 Comment statement

Specify an asterisk (*) as the first word on the line.

SQL Command Analysis Page 111

9.2 CONNECT statement

CONNECT [DATABASE database] [USER user PASSWORD password]

Connects the specified DB2 database and/or userid. If the USER keyword is specified, the
PASSWORD keyword is also required.

If DATABASE is specified alone, the current DB2 userid is connected to the named database.

If USER is specified alone, the designated userid is connected to the current database.

If both DATABASE and USER are specified, connection is to both the database and userid.

The CONNECT command remains in effect until a new CONNECT is encountered.

Note: Connect is done using the SQL CONNECT command, not using SQLINIT. This means that
eventual user SQL programs invoked from SQLCABAS will have a connection to the default
database and userid.

Page 112 SQL Command Analysis

9.3 STATISTICS statement

STATISTICS [ALL]
[EVERY n]
[EXIT n]
[GROWTH {n|ANY}]
[INValidate]
[IREORG]
[NOREPORT]
[REBIND]
[ON day]

The STATISTICS statement defines how automatic statistics should be performed for the DB2 tables
named in the subsequent TABLES or DBSPACE command(s). When a STATISTICS statement is
encountered, all command parameters are set to their default values, except for the EXIT parameter
which remains active if previously specified.

The parameters EVERY, GROWTH and ON define the conditions for statistics. Several conditions
may be specified on the same STATISTICS statement. All of them are examined and statistics occur
as soon as one condition is satisfied. If no conditions are stated, unconditional statistics is performed.

ALL

Specify ALL if an UPDATE ALL STATISTICS command should be issued, instead of the
default UPDATE STATISTICS.

EVERY n

Specify the auto-statistics interval as a number of days. The date of the last statistics for a table
is kept in an SQL/CA control table. When the difference in days between that date and the
current date is greater than or equal to the EVERY parameter, statistics are updated.

SQL Command Analysis Page 113

EXIT

Specify the name of a user REXX EXEC to be invoked after updating the table statistics and
before reprepping the dependent packages. Following parameters are passed to the user exit:

- database name
- DBspace owner and DBspace name
- table creator name and table name
- status of the first table index as blank if no table indexes exist, F if the first table index is

clustered or W if the first index is no longer clustered
- current number of table rows
- current percentage of table overflow rows
- table growth percentage (when statistics were triggered by the GROWTH parameter)

On exit the user should pass following returncode:

0 normal exit
4 never call userexit again
8 do not call userexit again for current database
12 do not call userexit again for current dbspace

A sample user exit named SQLCABAX EXEC, is part of the product material.

GROWTH n

When specified, SQLCABAS counts the rows in the selected tables by means of a SELECT
COUNT(*). When the absolute difference between the actual rowcount and the rowcount
recorded at the last statistics exceeds the growth percentage specified, statistics are updated. The
GROWTH ANY specification causes statistics when any change in the number of table rows is
detected.

INValidate

If this parameter is specified, auto-statistics for a table will cause invalidation and reprepping of
all packages dependent on that table. Invalidating packages implies updating the column VALID
in the SYSACCESS catalog. Therefore this command option requires DBA authority. If the
parameter is omitted, no automatic invalidation occurs.

IREORG

Specify this parameter to request automatic reorganization of all table indexes after statistics. If
the parameter is omitted, no index reorganization is performed. Specify this parameter only if a
DB2 version with support for the REORGANIZE INDEX command has been installed. Note that
this command does not alter the clustering state of the index: a table or DBspace reorganization
is required to achieve this. However, index-only reorganization may be used to reclaim empty
index pages or to reorder fragmented indexes.

Page 114 SQL Command Analysis

NOREPORT

After statistics, SQLCABAS displays on the console:

- the current number of table rows
- the current percentage of overflow rows
- the state of the table's first index

Specify NOREPORT to suppress the above output.

REBIND

This option is a better alternative for the INVALIDATE option, if you have DB2 Version 3 with
support for the REBIND PACKAGE command. REBIND causes the dependent package(s) to
be re-preprocessed by DB2. Contrarily to INVALIDATE, REBIND does not require the DBA
privilege, if the packages are rebound by its creator. A DBA may rebind all packages.

ON day

If auto-statistics must be executed on a given day, specify the name of that day as sunday,
monday etc.

SQL Command Analysis Page 115

9.4 TABLES statement

TABLES creator.tablename

Specify the name of the tables(s) for which automatic statistics should be performed, based on the
criteria from the last STATISTICS command.

Both creator and tablename may contain the generic % specification, in order to select multiple
tables: %.% will select all tables in the database.

Page 116 SQL Command Analysis

9.5 DBSPACE statement

DBSPACE [owner.]dbspacename

Specify the name of the dbspace(s) for whose tables automatic statistics should be performed, based
on the criteria from the last STATISTICS command.

If owner is omitted, a PUBLIC dbspace is assumed. The dbspacename may be contain the generic
% specification in order to select multiple dbspaces.

SQL Command Analysis Page 117

 indexed access with or without key values, DBspace scan access or view materialization15

9.6 MONITOR statement

MONITOR [creator.]package_name [NOREPORT]

The MONITOR commands causes the named packages to be inspected for changes in their access
method or cost. The creator and package name may be generic, thus allowing monitoring of multiple
packages in one command. If the monitor command is part of a control file that contains auto-
statistics control commands, the command should normally be specified as the last command
executed against a given database. This ensures that automatic package invalidations, forced by
autostatistics, are taken into account during monitoring. Program monitoring implies invocation of
the command analysis program, which stores its results in the archive tables.

An analysis report is produced for each of the packages analysed, unless the NOREPORT option
has been specified. The analysis report is stored on the A-disk of the executing machine as a CMS
file named <fn> SQLCA, where <fn> equals the name of the package.

The main purpose of package change monitoring, is to report transitions from indexed to DBspace
scan access.

The monitor facility should execute with a DB2 userid that has the DBA privilege.

For all packages named in the MONITOR command, following actions will be taken:

- If the package has not been [automatically] reprepped since the last monitoring run, no action is
taken.

- Else, a new analysis is started, an analysis report is produced (unless NOREPORT is in effect)
and the analysis results are stored in the SQL/CA archive tables. The new analysis results are
then compared with the previous analysis results.

- If a command in the package has a changed access method or a higher execution cost, it is printed
with the new access method and cost on the monitoring report. Any warnings issued during15

analysis are printed as well.

- For package commands that have been inserted or changed manually, the old cost and old access
method will not appear on the change report.

Page 118 SQL Command Analysis

9.7 VM or CMS command

A control file command not recognized as an SQLCABAS command, is considered to be a VM or
CMS command, that is, the command line will be executed by SQLCABAS using the CMS SVC 202
interface, with both a standard (tokenized) and extended (non-tokenized) parameterlist.

- If a VM command has to be executed, the command line should start with the characters CP. For
example: CP SPOOL CONSOLE START

- In order to execute a CMS EXEC file, start the command line with the word EXEC. The
EXECname and all EXEC arguments should be contained within the same control file record.
For example: EXEC XXX arg_1 arg_2

- A CMS command needs no prefix. For example: FILEDEF PRINT

Note:

Since SQLCABAS runs as a CMS nucleus extension, all CMS commands can be executed, even
those that need the CMS user area.

SQL Command Analysis Page 119

9.8 Sample SQLCABAS Control File

CP SPOOL CONSOLE START *
CONNECT DATABASE DB1 USER SQLDBA PASSWORD XXXX
STATISTICS EXIT BASEXIT
STATISTICS EVERY 7 GROWTH 10 IREORG REBIND
TABLES %.%
STATISTICS GROWTH 5 IREORG REBIND
TABLES SQLDBA.ACCOUNT
MONITOR SQLDBA.%
CP SPOOL CONSOLE STOP SYSTEM

The above control file ensures that the statistics for all tables in the database DB1 are updated every
week (EVERY 7) or at a 10% table growth (GROWTH 10), whichever occurs first. For the table
"SQLDBA.ACCOUNT" statistics are updated at a 5% growth (GROWTH 5).

After statistics, indexes will be reorganized automatically (IREORG). Then the user exit BASEXIT
is invoked. and all dependent packages reprepped (REBIND).

Finally, the access strategy and cost of all newly [auto]prepped packages owned by SQLDBA are
compared with the access strategy and cost recorded during previous analysis (MONITOR).
Eventual access changes are reported.

Page 120 SQL Command Analysis

9.9 Sample Auto-statistics Exit

The function of the sample exit BASEXIT EXEC is to automatically reorganize tables

- with a weakly clustered primary index
- with more than 10% overflow rows
- with a table growth of 15% or more

Reorganization is done by calling an installation provided REORG exec.

If multiple tables reside in the same DBspace, they are all reorganized in the same run and the exit
is no longer invoked for tables in that DBspace.

/* Sample auto_statistics user_exit */

Arg database dbowner dbspace tcreator tname istat rows orows growth
If (istat = 'w') ! (orows > 10) ! (growth > 15) then do

 Dbspn = strip(dbowner) !! '.' !! Dbspace
 'EXEC SQLREORG' dbspn
 Exit 12 /* signal dbspace processed */

End
Exit 0

SQL Command Analysis Page 121

10 SQL/CA data modelling facility

The data modelling facility of SQL/CA can be used to transfer catalog statistics for one or more Dbspaces
between two DB2 systems, for example between a production system (source) and a development system
(target). After the copy, DB2 access strategies for the table(s) in the Dbspace(s) processed, will be
identical in both systems.

Copying is done by:

- Executing the OBTAIN function of the modelling facility program SQLXDMF in the source system.
This results in the creation of a CMS extract file which contains the catalog data to copy.

- Executing the SQLXDMF INSTALL function in the target database. The INSTALL function reads
the specified CMS extract file and stores its data in the target DB2 catalogs by means of an UPDATE
command. Please note that DBA authority is required to update the catalogs.

The data modelling facility may also be used to modify the statistics within the same system, for
simulation purposes. In this case the OBTAIN and INSTALL functions are executed against the same
DB2 database and the new catalog data are inserted manually in the extract file, using XEDIT.

Both the OBTAIN and INSTALL functions request CONNECT information, as a database name, a
username and a user password. This allows you to specify the source database for an OBTAIN or the
target database for an INSTALL operation. The CONNECT function displays the name of the current
database as a default. If the current database and user connection are correct, press ENTER on the
connection screen. Otherwise, enter the new databasename and the new username and password.

The catalog statistics for a DBspace are not installed automatically (to avoid problems during DBspace
reorganization utilities that use the NPAGES column). The DBspace section of the generated SQLXDMF
SQL file is prefixed with a comment (asterisk) sign. To effectively update the DBspace statistics, the
asterisk must be removed before INSTALL, that is, the keyword *DBSPACE should be changed to
DBSPACE.

Page 122 SQL Command Analysis

10.1 Obtain catalog statistics from source system

The OBTAIN function is invoked using the following command:

SQLXDMF OBTAIN [Dbspace_owner.]DBspacename [CMS filename]

Dbspace owner

May be omitted, in which case PUBLIC is assumed; a generic name should not be used here.

Dbspace name

Is required and designates the Dbspace for which statistical data should be stored in the extract file;
a generic name, containing the % pattern character can be used to obtain data for several Dbspaces.

CMS filename

- Specify the name of the extract file to be created, as filename, filetype and filemode.
- If filemode is omitted, it defaults to A.
- If no filename is specified, the extract file will be named SQLXDMF SQL A.
- If a filename is specified, and that file already exists, the newly extracted data will be appended

to the end of the file.

SQL Command Analysis Page 123

The following is a sample extract file:

 *DBSPACE PUBLIC.SQLCA_CONTROL
 NACTIVE=2
 NPAGES=512
 TABLE SQLDBA.SQLCA_CONTROL
 ROWCOUNT=53
 NPAGES=1
 COLUMN SQLDBA.SQLCA_CONTROL.CREATION_DATE
 COLCOUNT=6
 HIGH2KEY=1996-05-11
 LOW2KEY=1996-03-27
 AVGCOLLEN=5
 COLUMN SQLDBA.SQLCA_CONTROL.CREATOR
 COLCOUNT=6
 HIGH2KEY=SQLAF
 LOW2KEY=CMSVA
 AVGCOLLEN=9
 VAL10=CMSVA
 VAL50=SQLAF
 VAL90=SQLDBA
 FREQ1VAL=SQLAF
 FREQ1PCT=30
 FREQ2VAL=SQLDBA
 FREQ2PCT=26
 INDEX SQLDBA.SQLCA_CONTROL_IX
 FULLKEYCOUNT=53
 FIRSTKEYCOUNT=6
 NLEAF=1
 NLEVELS=1
 CLUSTER=F
 CLUSTERRATIO=10000

Page 124 SQL Command Analysis

10.2 Modifying catalog statistics on the extract file

Between the OBTAIN and the INSTALL steps, the extract file may be altered using XEDIT. This
may be required for modifying the catalog statistics in a database, when testing what if scenario's,
such as:

- what access strategy will be used for a very large table (ROWCOUNT)?
- what if a table is not in a dedicated Dbspace (NTABS > 1)?
- what will be the effect of changing the clustering ratio of an index?

The extract file supplies following updateable information:

DBSPACE (comment * inserted by default)
- NACTIVE Number of active pages in the dbspace (INTEGER)
- NPAGES Number of pages defined in the dbspace (INTEGER)

TABLE
- ROWCOUNT Total number of rows for this table (INTEGER)
- NPAGES Number of pages in the dbspace that contain rows of this table (INTEGER)

COLUMN
- COLCOUNT Number of distinct values in this column (INTEGER)
- HIGH2KEY Second highest value in this column.
- LOW2KEY Second lowest value in this column.
- AVGCOLLEN Average length of the column (SMALLINT)

Column statistics for non-uniformly distributed column values
- VAL10 The column value at the tenth percentile.
- VAL50 The column value at the fiftieth percentile.
- VAL90 The column value at the ninetieth percentile.
- FREQ1VAL The most frequent value in the column.
- FREQ1PCT Number of rows that contain the FREQ1VAL column value, given as a

percentage of the total number of rows (SMALLINT)
- FREQ2VAL The second most frequent value in the column.
- FREQ2PCT Number of rows that contain the FREQ2VAL column value, given as a

percentage of the total number of rows (SMALLINT)

INDEX
- FULLKEYCOUNT Number of distinct values of the full key (INTEGER)
- FIRSTKEYCOUNT Number of distinct values of the first column of the key. Equals

COLCOUNT for the index column (INTEGER)
- NLEAF Number of leaf pages in the index (INTEGER)
- NLEVELS Number of levels in the index (SMALLINT)
- CLUSTER The index clustering attribute(CHAR(1))
- CLUSTERRATIO Measures how clustered an index is (10000 for a completely clustered

index) (SMALLINT)

SQL Command Analysis Page 125

 SQL-coded format is used for following data types: DATE, TIME, TIMESTAMP, DECIMAL,16

SMALLINT, INTEGER.

When modifying the extract file, the following should be taken into account:

- The majority of the statistical data are positive numbers. During update, the maximum value
allowed depends on the data type (integer or smallint).

- Special coding rules apply for the statistics HIGH2KEY, LOW2KEY, VAL10, VAL50,
VAL90, FREQ1VAL, FREQ2VAL. These statistics contain column data distribution
information. They are stored in the catalogs in an internal SQL-coded format and converted to
conventional notation by SQLXDMF. A date field for instance, is stored internally in 3 bytes;
the external format used by SQLXDMF is 10 characters (YYYY-MM-DD). When INSTALLing
an updated value, SQLXDMF converts it back to the DB2 format before issuing the SQL
UPDATE. When manually modifying the above data, the following rules should be observed:16

- for [VAR]CHAR columns the update value should be supplied without enclosing quotes
- for numeric columns a negative update value should be supplied as -nnn
- for DECIMAL columns with a scale, no decimal point should be inserted; all digits in the

fractional part of the number should be specified immediately following the non-fractional
digits. For example, specify 400 as the value 4.0 of a DECIMAL(3,2) column.

- for DATE columns the update value should be in the form YYYY-MM-DD
- for TIME columns the update value should be in the form HH.MM.SS
- for TIMESTAMP columns the update value should be in the form YYYY-MM-DD-

HH.MM.SS.MMMMMM (where MMMMMM is the microsecond value)

- If the COLCOUNT value for an index column is supplied, the HIGH2KEY and LOW2KEY
should also be supplied. If the data is not uniformly distributed, also supply values for the
statistics VAL10, VAL50, VAL90, FREQ1VAL, FREQ1PCT, FREQ2VAL and FREQ2PCT.

Page 126 SQL Command Analysis

10.3 Install catalog statistics in target system

The INSTALL function is invoked using the following command:

SQLXDMF INSTALL [CMS filename]

CMS filename:
Specify the name of the extract file containing the data to be installed, as filename, filetype and
filemode; if filemode is omitted, it defaults to A; if no filename is specified, the extract filename
defaults to SQLXDMF SQL A.

By default, only table and column statistics are updated, which is usually sufficient for an install. To
update the DBspace statistics as well, remove the asterisk in the keyword *DBSPACE in the extract
file.

If an SQL error occurs during install, the failing command and the SQLCODE are displayed.
SQLCODE 100 indicates that the DB2 object copied from the source database has not been defined
in the target. For example: the source system has a table index, not present in the target system.

To undo an INSTALL for a given Dbspace, run an UPDATE STATISTICS for that Dbspace. This
will insert the real table statistics into the catalogs and remove the simulated ones.

SQL Command Analysis Page 127

10.4 Running the SQLXDMF TRANSFER function

The SQLXDMF transfer function provides for a combined operation of the OBTAIN and
INSTALL functions. Moreover, it provides some functional enhancements

- by taking a copy of the catalog data in the target database, before performing the install
- by calling XEDIT for the SQLXDMF SQL transfer file between obtain and install. This allows

for manual modifications to the catalog data before installing them.

The TRANSFER function is invoked using the following command:

SQLXDMF TRANSFER [Dbspace_owner.]DBspacename

Dbspace owner:
May be omitted, in which case PUBLIC is assumed; a generic name should not be used here.

Dbspace name:
Is required and designates the Dbspace for which statistical data should be stored in the extract file;
a generic name, containing the % pattern character can be used to obtain data for several Dbspaces.

The function performs the following functions:

- OBTAIN the current catalog data for the designated Dbspace(s) of the target database into a CMS
file named SQLXDMF SAVE A.

- OBTAIN the current catalog data for the designated Dbspace(s) of the source database into a
CMS file named SQLXDMF SQL A.

- call XEDIT for the SQLXDMF SQL A file

- INSTALL the catalog data for the designated Dbspace(s) in the target database using CMS file
SQLXDMF SQL A.

Page 128 SQL Command Analysis

10.5 Running SQLXDMF in non-interactive mode

The SQLXDMF EXEC can be invoked from user-written procedures. However, the SQLXDMF
program requests connection parameters in fullscreen mode to obtain the target database and a DBA
userid. During non-interactive execution, these data should be stacked before invoking SQLXDMF.
The databasename, the userid and its password should be stacked using separate “queue” commands.
To terminate the simulated 3270 screen input, the string <ENTER> should be queued. The database
and username may be omitted, if the default connection is adequate. The <ENTER> string must
always be queued.

For example:

queue “DB1"
queue “SQLDBA”
queue “SQLPASS”
queue “<ENTER>”
‘EXEC SQLXDMF OBTAIN” database_name

SQL Command Analysis Page 129

11 SQL/CA system processing OPTIONS file

The default SQL/CA processing options are kept in a CMS file named "SQLCA OPTIONS". During
product installation, the file - with the initial defaults - is placed on the public minidisk containing the
other product material. The initial options may be changed using XEDIT. The options present in the file
are displayed when command analysis is invoked and may be overridden for each analysis run. When
searching for the SQLCA OPTIONS file, SQL/CA uses the default CMS search order, by searching the
minidisks from filemode A to Z. This allows to provide one or more users with an individual copy of the
options file.

The SQLCA OPTIONS file contains the following control statements. Each statement should be coded
on a separate line. The statements are free format and a variable number of blanks may appear between
the words. The order of the statements in the file is not relevant.

ALLSTAT { YES | NO }

Specify YES if UPDATE ALL STATISTICS should be performed.

System default: NO

ARCHIVE { YES | NO }

Specify YES if analysis results should be archived.

System default: YES

AUTOSTAT { FIRST | YES | NO }

Specify AUTOSTAT FIRST if command analysis should perform an automatic update statistics for
all tables referenced by the application, if an update statistics has never been issued for the table.

Specify AUTOSTAT YES if command analysis should unconditionally perform an automatic update
statistics for all tables referenced by the application.

Specify AUTOSTAT NO to disable automatic update statistics.

System default: FIRST

Page 130 SQL Command Analysis

COPY { * | userid }

Specify userid, if a copy of the extract and the hostvar files should sent to the named user. Specify
* in the other case.

System default: *

DATABASE databasename

If the SQL/CA archive tables reside in a common database, state the name of that database. Omit the
parameter when each database has its own archive tables.

System default: omitted

DELAY { * | userid }

If disconnected (batch) mode execution is standard, specify the userid running the SQL/CA batch
facility. Specify * if the execution mode defaults to interactive.

System default: *

DEST { * | userid }

Specify userid, if a copy of the analysis report should sent after command analysis. Specify * in the
other case.

System default: *

EDIT { YES | NO | W1 | W2 | W3 }]

Specify YES if the analysis report should be XEDITed after analysis.

Specify NO if the report should not be edited.

Specify W1, W2 or W3 if the report should be edited when analysis warnings have been issued with
a severity code of 1, 2 or 3 respectively.

System default: YES

NOMONSTATS

Disables integration of the statistics gathered for the package by the SQL/Monitoring Facility.
Specify if SQL/MF is installed but integration is not wanted.

SQL Command Analysis Page 131

REPORTWAIT { YES | NO}]

When analysis requests are forwarded to a server and REPORTWAIT=YES is specified, the user will
have the opportunity to wait for the analysis report.

PRINT { YES | NO | W1 | W2 | W3 | SHORT}]

Specify YES if the analysis report should be printed after analysis using the current spool options of
the virtual printer.

Specify NO if the report should not be printed.

Specify W1, W2 or W3 if the report should be printed when analysis warnings have been issued with
a severity code of 1, 2 or 3 respectively.

Specify SHORT if the report should be printed in condensed format. A condensed report contains the
command text and the related warnings only. All other print options will print the report in non-
condensed format.

System default: NO

SAVE { YES | NO }

If an existing analysis report (<filename> SQLCA) for the application should be preserved, specify
YES. This will rename the existing report to a CMS file named <filename> SQLCAXXX, where
XXX is a sequence number assigned by SQL/CA. If no saved reports exist, the sequence number will
be set to 001. If saved reports do exist, the sequence number is incremented by 1 for each newly
saved report.

System default: NO

Page 132 SQL Command Analysis

UNLOADP {SERVER |CLIENT}

This option controls the unloading of DB2 packages during their analysis in server mode.

If UNLOADP is set to CLIENT, the package is unloaded using the client's privileges and the client
can unload only packages owned by him.

If UNLOADP is set to SERVER or omitted, the package is unloaded using the server's privileges and
the client can indirectly unload packages not owned by him, if the server has the necessary DB2
authority.

System default: SERVER

UPCASE { YES | NO }

Specify YES if the analysis report should be converted to uppercase before printing.

System default: NO

SQL Command Analysis Page 133

12 SQL/CA Glossary

ACCESS

DB2 has following ways of accessing a table:

1 DBSPACE SCAN (also termed RELATIONAL SCAN)

The entire DBspace containing the table is scanned. This will also read (and lock) pages of other
tables residing in the same DBspace.

In most cases, a DBspace scan is a problem. However, for small tables residing in a dedicated
DBspace, a DBspace scan may be the most appropriate access strategy.

2 SELECTIVE INDEX SCAN

Selected rows of the table can be accessed using an index and specific key values, because the
command predicate specifies a string that can be used to directly access an index page. Data
pages will be accessed selectively during predicate resolution, when the predicate contains search
conditions on columns that are not in the search index, or when the search index has VARCHAR
or VARGRAPHIC columns.

3 NON-SELECTIVE INDEX SCAN

The table is accessed using an index without specific key values, because because the command
predicate specifies a string that cannot be used to directly access an index page.

This happens:

- when the predicate operator does not allow direct index access (such operators are called non
key-matching; they are listed in the table Predicate operator evaluation on page 186), for
example : WHERE C1 IS NOT NULL

- when the predicate omits leading columns in a composite index, for example :
WHERE C2 = x (and the index is on C1,C2)

- when there is some other coding inefficiency in the predicate, such as: WHERE
C1=:HOSTVAR+10 or WHERE C1=:HOSTVAR (and the datatype of hostvar is not
compatible with that of C1)

Page 134 SQL Command Analysis

A non-selective index scan accesses all the pages of the index. It will also access table data pages:

- when the predicate contains search conditions on columns not available in the search index
- when a column of the search index has the VARCHAR or VARGRAPHIC datatype

An index scan may be chosen by DB2 as an alternative for a DBspace scan, for example, when
the relational scan productivity is low (many pages not belonging to the table would be scanned
because the table's SYSCATALOG.PCTPAGES value is low). A true DBspace scan might be
performed under different circumstances, for instance when the table gets larger or when less
tables share the same DBspace. In some cases, a non-selective index scan may be worse than a
DBspace scan, since both index and data pages must be accessed, whereas a DBspace scan
accesses data pages only.

4 SELECTIVE OR NON-SELECTIVE INDEX-ONLY SCAN

All columns in the SELECT list and in the predicate are indexing columns and can be retrieved
without accessing the data pages. A selective index-only scan is the most efficient access path.
In DB2 versions before 3.4, EXPLAIN does not signal an index-only scan.

5 FULLY-QUALIFIED INDEX SCAN

All columns of a unique index can be used for the index scan.

ADDITIONAL SORT

DB2 performs an additional sort at the end of the query block. This may be caused by ORDER BY,
GROUP BY or SELECT DISTINCT clauses. Note that a small number of rows will be sorted by
DB2 in storage with no I/O involved. Larger response sets will be sorted using internal DBspaces.

ATOPEN

A dependent block may be executed once when the corresponding parent block is initiated
(ATOPEN=YES) or it may be executed for each iteration in the parent block (ATOPEN=NO). In
the latter case, the iteration count of the dependent block is the product of its own estimated iteration
and that of its parent(s). If a block has multiple ancestors and each invocation has ATOPEN=NO, the
iteration count and the execution cost may become very high. Therefore SQL/CA will issue a
warning. However, high iteration rates may exist, even with an ATOPEN=YES block, because DB2
may save the result of the dependent block in internal DBspaces and iteratively search these
Dbspaces, instead of executing the dependent query. This situation is not visible in the EXPLAIN
results. In any case, you should try to keep the number of matching subquery rows as low as possible.
Using a correlated subquery may reduce the size of the subquery result.

CHILD BLOCK

The opposite of parent block. See PARENT BLOCK.

CLUSTERED INDEX

An index is clustered if the sequence of its entries reflects the physical ordering of the table rows. The
clustering attribute of a given index is stored in SYSINDEXES as a flag and as a clustering ratio. The

SQL Command Analysis Page 135

latter is a value ranging from 0 to 10000 and represents the degree of clustering, where 10000 is the
optimal clustering ratio.

An index is termed "weak" by SQL/CA, if the SYSINDEXES flag says so, or if the clustering ratio
drops below 6000. The clusterratio on the SQL/CA index report equals the DB2 clusterratio divided
by 100.

COMMAND COST SUMMARY

The cost value from the DB2 explain cost table indicates for a given query block the total execution
cost estimate. This estimate includes the cost of eventual dependent blocks. For commands containing
multiple queries, SQL/CA provides a more refined cost computation method. For each query block,
following values are computed:

Single_Cost
The cost of the query block, not including the cost of the dependent and the ancestor blocks.

Exec_Times
The estimated number of invocations from all parent blocks. The number of invocations of the parent
blocks themselves and the ATOPEN flags are taken into account.

Multi_Cost
Single_Cost multiplied by Exec_Times.

SQL_Cost
The cost from the DB2 explain table i.e. the command cost plus the cost of all its dependent blocks.

Highest_Subquery_Cost
The highest Multi_Cost found for a subquery in the command.

For both single and multiple query commands, following cost information is provided:

Total Command Cost
The cost estimate associated by DB2 with the command as a whole.

ISQL-like Cost
(total_command_cost / 1000) + 1. Interactive SQL systems such as ISQL present the Query Cost
Estimate in this format.

COMPOSITE

When a command is performed in several steps, the DB2 term "composite" refers to the response set
obtained thus far, as the result of execution in previous steps. In joins, the composite is also termed
the outer table.

DBSPACE SCAN

A synonym of RELATIONAL SCAN. Refer to the keyword ACCESS.

Page 136 SQL Command Analysis

DBSPACE SCAN PRODUCTIVITY

A value computed by SQL/CA to estimate the percentage of table data actually accessed during a
DBspace scan. The value is taken from the PCTPAGES column in the SYSCATALOG row for the
table.

For critical, operational tables productivity should normally be 100%, that is, the table should have
its dedicated DBspace. Otherwise, a DBspace scan will imply unnecessary I/O by reading pages of
other tables and unproductive locks on pages that contain rows belonging to other tables.

DEFAULT FILTER FACTOR

The DB2 Optimizer may not be able to use significant filter factors during path selection. Default
filter factors are then adopted.

This will be the case when:

- no catalog statistics are available to compute the filter factor
- the predicate contains host variables (which do not have a value when the access strategy is

determined during program preprocessing)
- the predicate contains expressions
- disjunctive predicates are used, by means of the OR connector

When no catalog statistics are available, the default filter factor is as follows:

- for the = operator 0.040 (4% qualifying rows)
- for LIKE and BETWEEN 0.100 (10% qualifying rows)
- for all other operators 0.333 (30% qualifying rows)
- for the <> operator 0.960 (96% qualifying rows)

When statistics are available, the default filter is as follows:

- for the = operator 1/COLCOUNT (where COLCOUNT is the estimated number of
distinct values in the column)

- for all other operators see the default filter factor table on page 187.

ESTIMATED GLOBAL COMMAND FILTER FACTOR

Represents the fraction of table rows estimated to satisfy the command predicate as

(estimated number of satisfying rows) / (sum of all rows of all tables accessed)

The filter value ranges from 0 to 1. The lower the value, the better the selectivity of the command
predicate.

SQL Command Analysis Page 137

ESTIMATED EXECUTION ITERATION BY ANCESTOR BLOCKS

Using the TIMES column for all ancestor ("parent") blocks, SQL/CA computes the total number of
times this query block will actually be executed. The ATOPEN attribute of each ancestor block is
also taken into account.

ESTIMATED NUMBER OF ROWS PROCESSED

The ROWCOUNT column from the EXPLAIN Structure table. It indicates the estimated number of
rows returned for the table(s) used in this command. The filtering factors associated with the columns
referenced in the command predicate, intervene in estimating the size of the response set. The
ROWCOUNT column may be zero for small response sets. SQL/CA computes the total number of
table rows out of which the estimated number of rows is selected. For join commands, the total counts
the rows for all tables participating in the join. If the estimated value equals the number of table rows,
SQL/CA assumes a sequential table scan and issues a warning.

ESTIMATED TIMES PREDICATE CONDITIONS MET

The TIMES column from the EXPLAIN Structure table. It estimates the probability that the predicate
conditions of the command will be true. It also shows how many times eventual dependent blocks
will be executed.

FILTER FACTOR

For each column reference in the command predicate, DB2 determines a filter factor, which
represents the fraction of table rows estimated to satisfy the predicate as:

estimated_number_of_rows / number_of_table_rows.

The filter is a value between 0.0 and 1.0. The lower the value, the better the column's selectivity. A
filter factor of 1 means the column has no selectivity at all. The filter factor depends on the
distribution of data values for the column. A column having a high number of unique values within
the table, will have a good selectivity, that is, a small filter factor. If an SQL command supplies a
search value for such a column, the Optimizer knows that only a few number of rows will meet the
condition and that the response set will be small. This will reduce the command execution cost and
determine the access strategy. A column with a small filter is also a good index candidate.

The filter factor chosen depends on the predicate operator used, as shown on page ?.

FULLY-QUALIFIED INDEX SCAN

Refer to the keyword ACCESS.

INDEX DISQUALIFIED

An index is present but not used by the optimizer, because the application command specifications
are inhibiting it. The optimizer will use a DBspace scan or an index scan (scanning the entire table
using the index). Whether a DBspace or an index scan is chosen, depends on factors such as the index
clustering ratio, the percentage of table pages in the DBspace etc.

Page 138 SQL Command Analysis

INDEX SCAN

Refer to the keyword ACCESS.

INDEX-ONLY SCAN

Refer to the keyword ACCESS.

KEYMATCHING

A predicate is called keymatching, when the columns used in the predicate can be formed into a string
that matches existing entries of the table index. Such a predicate allows direct retrieval of a qualifying
key and row. To be a candidate for keymatchinq, the predicate must be sargable.

Examples of key-matching predicates:

C1 = 1
C1 > 1

Examples of non key-matching predicates:

C1 <> 1
C2 NOT LIKE :VAR

Given a composite index on (C1,C2):

C1 = 1 is key-matching
C2 = 1 is not key-matching

MATERIALIZATION

View materialization is a technique used by DB2 version 3 in order to remove restrictions on the
processing of views. The feature implies storing of intermediate select results in internal tables. To
access these intermediate results, indexed access is never used by DB2. Hence the possibly negative
performance implications of view materialization.

MERGE SCAN JOIN

DB2 scans the composite and the new table in the order of the join column and joins rows with
matching columns. A sort operation may be necessary to access the new table and or the composite
in the required order and additional work dataspace (internal DBspaces) may be required. Therefore,
a merge scan join is usually less performant than a nested loop join.

METHOD

Represents the action performed by DB2 for a given plan: a merge scan join, a nested loop join, an
additional sort plan or a view materialization.

SQL Command Analysis Page 139

NESTED LOOP JOIN

For each row of the composite, matching rows of the new table are located and joined. An index may
be used to access the new table.

NEW TABLE

When a join is being executed, this DB2 term refers to the new table that is being accessed in the
current step (plan) and joined to the data resulting from previous steps (the composite table). The new
table is also called the inner join table.

NO EXPLICIT SORT PLAN

The ordering clause requested by the command can be satisfied using the index order without
requiring a specific sort operation.

NON-SELECTIVE INDEX SCAN

Refer to the keyword ACCESS.

PARENT BLOCK

In a multiple query structure, a parent or ancestor block is the subquery that initiates another
subquery, which in turn is called a child or dependent block.

PLAN

An SQL command may be executed in several steps. Each step is called a plan by SQL EXPLAIN
and receives a plan number, representing the order in which the command's plans are executed. There
are specific plans for join, sort and view materialization operations.

Page 140 SQL Command Analysis

PREDICATE

The search condition in the WHERE clause of an SQL statement.

There are four types of predicates. They are, in decreasing order of performance:

Keymatching

A predicate is keymatching, when it can be applied against an index for direct retrieval of qualifying
keys. The predicate is applied by the DB2 Database Subsystem (DBSS).

Index sarg

An index sarg is a predicate that can by applied by the DB2 Database Subsystem (DBSS) against
keys in index leaf pages.

Data sarg

A data sarg is a predicate that can by applied by the DB2 Database Subsystem (DBSS) against
column values in data pages.

Residual

A residual predicate cannot be applied by the DB2 Database Subsystem (DBSS), but is evaluated by
the DB2 Relational Data System (RDS). This implies that DBSS must obtain all rows that are to be
evaluated by RDS.

SQL Command Analysis Page 141

RANGE PREDICATE

A range predicate contains the SQL verbs LIKE or BETWEEN or one of the range operators >, >=,
<, <=.

A DEFAULT FILTER FACTOR is used for a range predicate, when it has the format:

- Column range_operator Host variable
- Column range_operator Column
- Column LIKE expression
- Column BETWEEN expression AND expression

RESIDUAL

The opposite of SARGABLE. See SARGABLE.

SARGABLE

An expression is sargable if it can be evaluated by the DB2/VM Database Subsystem (DBSS), that
is, while data is being retrieved from the I/O system. If the expression is not sargable (also called a
RESIDUAL expression) it is evaluated by the DB2/VM Relational Data System (RDS) after calling
the Database Subsystem to obtain data. Filtering the data (testing whether they satisfy the predicate
specifications) at the RDS level causes additional DBSS calls and increases the processing overhead.

Only sargable expressions are keymatching candidates. A predicate containing residual
expressions only, is resolved using an index or dbspace scan.

SCORE

An attempt to measure the efficiency of the DB2 access path. The higher the score, the better the path.

One "point" is added to the score each time one of the following conditions is true:

- index access is being performed
- fully-qualified index access is being performed
- index-only access is being performed
- selective index access is being performed
- index access uses a highly-clustered index
- index access uses a unique index

The highest score is achieved, when all the above conditions are true. The highest score is 6 (DB2
Version 3.4 and later) or 4 (DB2 versions before 3.4) The lowest score 0 indicates a DBspace scan.

SELECTIVE INDEX SCAN

Refer to the keyword ACCESS.

Page 142 SQL Command Analysis

UNCLUSTERED INDEX

The opposite of a clustered index. If the first index is unclustered, index reorganization is needed to
make the index clustered again. For a non-first index, the indexing column definition may be such
that the index will always be unclustered. A non-clustered index is less efficient than a clustered
index.

WEAKLY CLUSTERED INDEX

DB2 maintains a clustering ratio for each index as a value between 0 and 10000, where 10000 is the
best clustering ratio. If DB2 still considers the index as clustered, SQL/CA considers the index as
weakly clustered, if its clustering ratio drops below 6000. Also see UNCLUSTERED INDEX .

SQL Command Analysis Page 143

13 SQL/CA archive tables

If you intend to write your own queries against the SQL/CA Archive Tables, following description of the
archive tables may be useful. The tables Archive_Cost, Plan, Reference and Structure contain the data
from the DB2 Explain tables when the program was analyzed. The Archive_Index table contains SQL/CA
specific data. When an SQL command is stored in the archive tables, a unique "archive querynumber"
is assigned. The QUERYNO column may be used to join the rows of the different tables pertaining to a
particular command.

SQLCA_INDEX one row per command

QUERYNO INTEGER
FILENAME CHAR(8) CMS filename of source program
FILETYPE CHAR(8) CMS filetype (CSPAPPL for a CSP

application, ACCMOD for an)
FILEMODE CHAR(2) CMS filemode
DBASE CHAR(8) databasename where analysis has

been done
USERID CHAR(8) DB2 userid performing analysis
STAMP TIMESTAMP time of analysis
SQLCA_WARNING SMALLINT highest SQL/CA warning severity
SQLCA_W1 CHAR(1), if an SQL/CA warning of class

1-19 has been issued
SQLCA_W2 CHAR(1), the corresponding SQLCA_Wx

column
SQLCA_W3 CHAR(1), contains Y or blank otherwise.

For a list of the
SQLCA_W4 CHAR(1), warning message classes,
SQLCA_W5 CHAR(1), please refer to page 67.
SQLCA_W6 CHAR(1),
SQLCA_W7 CHAR(1),
SQLCA_W8 CHAR(1),
SQLCA_W9 CHAR(1),
SQLCA_W10 CHAR(1),
SQLCA_W11 CHAR(1),
SQLCA_W12 CHAR(1),
SQLCA_W13 CHAR(1),
SQLCA_W14 CHAR(1),
SQLCA_W15 CHAR(1),
SQLCA_W16 CHAR(1),
SQLCA_W17 CHAR(1),
SQLCA_W18 CHAR(1),
SQLCA_W19 CHAR(1),
SQLCA_W20 CHAR(1),
SQLCA_W21 CHAR(1),
SQLCA_W22 CHAR(1),
SQLCA_W23 CHAR(1),
SQLCA_W24 CHAR(1),
SQLCA_W25 CHAR(1),
SQLCA_W26 CHAR(1),
SQLCA_W27 CHAR(1),
SQLCA_W28 CHAR(1),

Page 144 SQL Command Analysis

SQLCA_W29 CHAR(1),
SQLCA_W30 CHAR(1),
SQLCA_W31 CHAR(1),
SQLCA_W32 CHAR(1),
REMARK CHAR(46) filename & line or CSP

application & processname
SHORT_COMMAND CHAR(72) first characters of SQL command
COMMAND VARCHAR(8192) full SQL command text

The columns FILENAME, FILETYPE, FILEMODE, DBASE and USERID constitute the logical and
unique key for an archived command.

SQL Command Analysis Page 145

SQLCA_COST one row per command query

QUERYNO INTEGER
QBLOCKNO SMALLINT query number: significant if

command contains subqueries
COST DECIMAL(15) DB2 cost of the query

SQLCA_PLAN one row per query plan

QUERYNO INTEGER
QBLOCKNO SMALLINT query number
PLANNO SMALLINT plan number: significant for

joins and sorts
METHOD SMALLINT classifies plan as join|sort
CREATOR CHAR(8) creator of table
TNAME CHAR(18) tablename
TABNO SMALLINT internal table number
ACCESSTYPE CHAR(1) DBspace scan|index usage
ACCESSCREATOR CHAR(8) creator of index used
ACCESSNAME CHAR(18) name of index used
SORTNEW CHAR(1) Y if new table is sorted
SORTCOMP CHAR(1) Y if composite is sorted

SQLCA_REFERENCE one row per column referenced in the command
query

QUERYNO INTEGER
QBLOCKNO SMALLINT
CREATOR CHAR(8)
TNAME CHAR(18)
TABNO SMALLINT
COLNO SMALLINT SYSCOLUMNS.COLNO
COLNAME CHAR(18) columnname (inserted by SQL/CA)
FILTER DECIMAL(4,3) column filter factor
DETAIL CHAR(28) details for reference

SQLCA_STRUCTURE one row per command query

QUERYNO INTEGER
QBLOCKNO SMALLINT
ROWCOUNT INTEGER estimated nr of rows returned
TIMES DECIMAL(15) estimated nr of times executed
PARENT SMALLINT blocknumber of parent query
ATOPEN CHAR(1) Y if query executed once at

open of parent

Page 146 SQL Command Analysis

SQL Command Analysis Page 147

14 SQL/CA analysis warning messages

The following messages are issued by the Text Analysis component of SQL/CA. The part of the
command predicate the message is referring to, will be printed before the message.

The periods in the message text are replaced by the column, hostvar or constant name, length or
datatype, whichever applies.

The following descriptive texts assume a predicate expression with the format "column
operator expression" (eg. column=constant). The inverse format (constant=column) is also handled
during analysis.

Most of the questionable conditions causing a warning, are fully described in the IBM publication
Performance Tuning Handbook for DB2/VM (Document Number SH09-8111-00).

A severity code 1, 2 or 3 is associated with each warning. The higher the severity code, the higher
the assumed impact on command performance. For some warnings, a higher severity code is issued
when the warning is related to an indexing column. The same warning has a lower severity if issued
for a non-indexing column.

AW01 Expression on index column .. is suboptimal

Reason

The predicate contains an arithmetic expression or a builtin function reference involving an indexing
column, such as colname-100 = 500 or colname =:hostvar+100. Such predicates are not
key-matching and not sargable.

Action

Transfer the expression to the other member of the predicate expression (in the first example:
"colname > 600") or compute the host variable expression (the second example) using host language
commands.

AW02 Datatype .. of column .. not compatible with datatype .. of column ..

Reason

An incompatibility has been found between the datatypes of the designated predicate columns. Such
predicates are not key-matching and not sargable. If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Action

The easiest solution is to use identical datatypes. If this is not possible, use compatible datatypes.

Refer to the datatype evaluation table on page 185.

Page 148 SQL Command Analysis

 AW03 Datatype .. of column . not compatible with datatype .. of hostvar ..

Reason

An incompatibility has been found between the datatypes of the designated predicate column and the
host variable. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Action

Refer to the datatype evaluation table on page 185.

SQL Command Analysis Page 149

AW04 Length .. of column .. exceeds length .. of column ..

Reason

An incompatibility has been found between the lengths of the designated predicate columns. Such
predicates are not key-matching and not sargable.If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Lengths A and B are considered compatible if length(A) >= length(B), except for VARCHAR
columns with length < 254 and VARGRAPHIC columns with length < 127, which are compatible
with all character values, fixed or variable of any length.

For instance, if column A has been defined as CHAR(20), column B specified as CHAR(25) violates
the above rule.

Action

Ensure that the length of the right hand predicate expression is less than or equal to the length of the
left hand expression.

AW05 Length .. of hostvar .. exceeds length .. of column ..

Reason

An incompatibility has been found between the lengths of the designated host variable and the
predicate column. Such predicates are not key-matching and not sargable.If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Lengths A and B are considered compatible if length(A) >= length(B), except for VARCHAR
columns with length < 254 and VARGRAPHIC columns with length < 127, which are compatible
with all character values, fixed or variable of any length.

For instance, if a table column has been defined as CHAR(20), a host variable specification of
CHAR(25) violates the above rule.

Action

Ensure that the length of the right hand predicate expression is less than or equal to the length of the
left hand expression.

Page 150 SQL Command Analysis

AW06 Length .. of constant .. exceeds length .. of column ..

Reason

An incompatibility has been found between the lengths of the designated constant and the predicate
column. Such predicates are not key-matching and not sargable. If an indexing column is involved,
a warning severity code 3 is issued, as this condition may prevent the optimizer from using an index.
For incompatible, non-indexing columns the severity code is set to 1.

Lengths A and B are considered compatible if length(A) >= length(B), except for VARCHAR
columns with length < 254 and VARGRAPHIC columns with length < 127, which are compatible
with all character values, fixed or variable of any length.

For instance, if a table column has been defined as CHAR(20), a constant specification of length 25
violates the above rule.

Action

Ensure that the length of the right hand predicate expression is less than or equal to the length of the
left hand expression.

AW07 Precision .. of column .. exceeds precision .. of column ..

Reason

An incompatibility has been found between the precisions of the designated predicate columns. Such
predicates are not key-matching and not sargable. If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Precisions A and B are considered compatible if precision(A) <= precision(B).

Precision applies to DECIMAL columns only and represents the total number of digits, including the
digits following the decimal point. For instance, if a table column A has been defined as DEC(2), a
column B specification of DEC(3) violates the above rule.

Action

Ensure that the precision of the right hand predicate expression is less than or equal to the precision
of the left hand expression.

SQL Command Analysis Page 151

AW08 Precision .. of hostvar .. exceeds precision .. of column ..

Reason

An incompatibility has been found between the precisions of the designated host variable and the
predicate column. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Precisions A and B are considered compatible if precision(A) >= precision(B).

Precision applies to DECIMAL columns only and represents the total number of digits, including the
digits following the decimal point. For instance, if a table column has been defined as DEC(2), a host
variable specification of DEC(3) violates the above rule.

Action

Ensure that the precision of the right hand predicate expression is less than or equal to the precision
of the left hand expression.

AW09 Precision .. of constant .. exceeds precision .. of column ..

Reason

An incompatibility has been found between the precisions of the designated constant and the
predicate column. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Precisions A and B are considered compatible if precision(A) >= precision(B).

Precision applies to DECIMAL columns only and represents the total number of digits, including the
digits following the decimal point. For instance, if a table column has been defined as DEC(2), a
constant specified as DEC(3) violates the above rule.

Action

Ensure that the precision of the right hand predicate expression is less than or equal to the precision
of the left hand expression.

Page 152 SQL Command Analysis

AW10 Scale .. of column .. does not match scale .. of column ..

Reason

An incompatibility has been found between the scales of the designated predicate columns. Such
predicates are not key-matching and not sargable. If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Scales A and B are considered compatible if scale(A) = scale(B) where B is not a constant. Scale
applies to DECIMAL columns only and represents the total number of digits following the decimal
point.

Action

Ensure that the scale of the right hand predicate expression is equal to the scale of the left hand
expression or that the scale of a constant does not exceed the scale of the left hand expression.

AW11 Scale .. of column .. does not match scale .. of hostvar ..

Reason

An incompatibility has been found between the scales of the designated host variable and the
predicate column. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Scales A and B are considered compatible if scale(A) = scale(B) where B is not a constant. Scale
applies to DECIMAL columns only and represents the total number of digits following the decimal
point.

Action

Ensure that the scale of the right hand predicate expression is equal to the scale of the left hand
expression or that the scale of a constant does not exceed the scale of the left hand expression.

SQL Command Analysis Page 153

AW12 Scale .. of column .. does not match scale .. of constant ..

Reason

An incompatibility has been found between the scales of the designated constant and the predicate
column. Such predicates are not key-matching and not sargable. If an indexing column is involved,
a warning severity code 3 is issued, as this condition may prevent the optimizer from using an index.
For incompatible, non-indexing columns the severity code is set to 1.

Scales A and B are considered compatible if scale(A) >= scale(B). Scale applies to DECIMAL
columns only and represents the total number of digits following the decimal point.

Action

Ensure that the scale of the right hand predicate expression is equal to the scale of the left hand
expression or that the scale of a constant does not exceed the scale of the left hand expression.

AW13 Indicator variable used with NOT NULL column ..

Reason

An EQUALS predicate involves an indexing column defined as NOT NULL and a host variable
followed by an indicator variable. This causes the expression to become non-sargable. If an indexing
column is involved, a warning severity code 3 is issued, as this condition may prevent the optimizer
from using an index. For incompatible, non-indexing columns the severity code is set to 1.

Action

Omit the indicator variable, since the column can never be null.

AW14 Logical connector OR is suboptimal

Reason

A predicate is connected to a previous predicate in the same command by means of an outer OR
connector (inner OR connectors are not warned). OR prevents the use of key-matching predicates.
Moreover, if an Or-ed predicate is not sargable, the entire command predicate becomes not sargable.

Action

Use alternative predicate specifications for the OR connector, such as UNION, IN with a value list
etc.

 For example:

SELECT ... WHERE A=value_1 OR A=value_2 OR A=value_3 should be stated as:
SELECT ... WHERE A IN (value_1,value_2,value_3)

Page 154 SQL Command Analysis

AW15 Logical connector NOT is suboptimal

Reason

A predicate of the type "NOT operand_1 operator operand_2" has been detected. Such predicates
are not sargable.

Action

Most of these predicates can be specified without the NOT connector.

"WHERE A >= B" is a better performer than "WHERE NOT A < B".

AW16 Predicate operator .. is not a key-matching candidate

Reason

The predicate operator displayed cannot be used for direct index access. This will cause additional
I/O requests during command execution.

Action

If the command logic allows it, select a key-matching operator. See the table Predicate operator
evaluation on page 186 and the Glossary on page 133 under KEY-MATCHING.

AW17 Predicate operator .. is not sargable

Reason

The predicate operator displayed will be evaluated by RDS and not by DBSS. This will cause
additional CPU consumption during execution.

Action

If if the command logic allows it, select a sargable operator. See the table Predicate operator
evaluation on page 186 and the Glossary on page 133 under SARGABLE.

SQL Command Analysis Page 155

AW18 Default filter factor used for range predicate is ..

Reason

The default filter factor shown is used for the predicate, because it has the format

- COL range_operator HOSTVAR
- COL range_operator COL ("range_operator" is one of the operators >, >=, <, <=)
- COL LIKE expression
- COL BETWEEN expression AND expression

The default filter factor depends on the number of distinct values for the table column, as stated in
the table Default filter factor on page 187.

Action

You should try to keep the filter factor as small as possible, since it determines the estimated
command's response set.

Use LIKE/BETWEEN instead of >, >=, <, <=. The default filter factor table shows that
LIKE/BETWEEN is three times more selective.

Ensure that a COLCOUNT is available: update the table statistics if it is not.

AW19 Range predicates used with hostvars may disqualify the index

Reason

Predicate operators such as BETWEEN and LIKE, but also >, >=, <, <= are called "range operators".
When used with host variables, the selectivity of the predicate (i.e. the number of table rows that will
satisfy the predicate conditions) is unknown, since the values contained in the host variables are not
known at prep time. Therefore, DB2 applies default selectivity rules. These defaults are rather
pessimistic (a selectivity ranging from 20-30%) and may effectively disqualify the index, especially
on large tables, whereas the same SQL command executed dynamically using ISQL or QMF, with
constants specified instead of hostvars, will use the index.

If an indexing column is involved, a warning severity code 3 is issued. For non-indexing columns the
severity code is set to 1.

Action

If range predicates cannot be avoided, specifying additional command predicates may help the
optimizer to determine a more adequate selectivity. You can try to make an eventual DBspace scan
less productive and hence less attractive to the optimizer, by ensuring that the table's PCTPAGE value
is low, for example by putting a large infrequently accessed table in the same DBspace. Dynamic
command execution can be considered, but this involves a serious programming effort (except in
CSP).

Page 156 SQL Command Analysis

AW20 Datatypes .. (column ..) and constant .. incompatible
 Expression not sargable.

Reason:

The predicate is not sargable due to the datatype of the column and the implied datatype of the
constant.

Action

The warning can be avoided be re-specifying the items datatype.

Please refer to the table Decimal precision evaluation on page 185.

AW21 Datatypes .. (column ..) and .. (hostvar ..) incompatible
 Expression not sargable.

 Reason:

The datatypes of the involved column and host variable are such that their evaluation is not sargable.
Please refer to the table Decimal precision evaluation on page 185.

Action

The warning can be avoided be re-specifying the items datatype.

AW22 No predicate specifications for leading column(s) of plan index ..

Reason

The predicate specifies one or more columns that are part of a multicolumn index but omits leading
indexing columns. For instance: the index is defined on columns C1 and C2 and the predicate
references C2 only.

Action

Omitting leading index columns will lead to a non-selective index scan. Since the predicate is
incomplete, it cannot be used by the optimizer to directly access an index entry. Instead, the index
will be scanned sequentially to evaluate the predicate. During evaluation, data pages may also be
scanned.

SQL Command Analysis Page 157

AW23 No index columns referenced in the command predicate for table (..) ..

Reason

For the designated table, no predicate is stated or the predicate states non-indexing columns only.
This may lead to a DBspace or an index scan.

Action

If the command logic allows it, specify a predicate with indexing columns, or create an index for one
of the predicate columns.

AW24 JOIN predicate not index eligible

Reason

A join predicate has been found, but index use has been disqualified because the join columns do not
have the same datatype, length or scale. Note that the warning applies to the predicate as a whole and
that the offending predicate clause may not be displayed before the warning.

Action

Ensure that the join columns have identical characteristics.

Page 158 SQL Command Analysis

 in a process called transitive closure17

AW25 Missing search condition on JOIN command

Reason

A join predicate (T1.COL1=T2.COL1) specifies additional predicates on the join columns. There
should be an equal number of additional predicates for both join columns. Omissions are completed
by the DB2 Optimizer only when the missing condition is sargable and an equijoin is being
performed. This was not the case for the command predicate warned.

Action

Repeat the local predicate specified for the first join column as a local predicate for the other join
column.

A command such as

SELECT * FROM TABA T1,TABB T2 WHERE T1.COL=T2.COL AND T1.COL>5

will result in AW25. Add the local predicate AND T2.COL>5. This gives the Optimizer a better
choice when determining the JOIN inner / outer table.

NOTE

- In general, try to specify as many local predicates as possible (that is, predicates other than the
join predicate). DB2 evaluates the local predicates before performing the join. Therefore, local
predicates reduce the size of the data to be joined, which has a beneficial performance impact.

- During a nested loop join, DB2 attempts to take the smallest table as the first one in the join (the
"outer" table). Specifying all local predicates helps the Optimizer during determination of the
inner or outer table.

AW26 Missing search condition on JOIN command will be added by Optimizer

Reason

A join predicate (T1.COL1=T2.COL1) specifies additional predicates on the join columns. There
should be an equal number of additional predicates for both join columns. Omissions are completed
by the DB2 Optimizer only when the missing condition is sargable and an equijoin. This was the17

case for the command predicate warned.

Action See the Notes under AW25 above.

The command SELECT * FROM TABA T1, TABB T2 WHERE T1.COL=T2.COL AND T1.COL=5
will result in AW26. The Optimizer adds the implied clause AND T2.COL=5.

SQL Command Analysis Page 159

AW27 A decimal scale (column ..) is incompatible with .. (column ..)
 Expression not sargable.

Reason:

One of the predicate columns is scaled DECIMAL and the other column is SMALLINT or
INTEGER. Therefore, the expression is residual. Please refer to the table Decimal precision
evaluation on page 185.

Action:

The warning can be avoided be re-specifying the datatype or scale of the items involved.

AW28 A decimal scale (column ..) is incompatible with .. (hostvar ..). Expression not sargable.

Reason:

One of the predicate elements is a scaled DECIMAL column and the other element is a SMALLINT
or INTEGER hostvar. Therefore, the expression is residual. Please refer to the table Decimal
precision evaluation on page 185.

Action:

The warning can be avoided be re-specifying the datatype or scale of the items involved.

AW29 Decimal precision < 4 (column ..) incompatible with SMALLINT (column ..). Expression
not sargable.

Reason:

One of the predicate columns is DECIMAL with precision < 4 and the other column is SMALLINT.
Therefore, the expression is residual. Please refer to the table Decimal precision evaluation on page
185.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

Page 160 SQL Command Analysis

AW30 Decimal precision < 4 (column ..) incompatible with SMALLINT (hostvar ..). Expression
not sargable.

Reason:

One of the predicate elements is a DECIMAL column with precision < 4 and the other element is a
SMALLINT hostvar. Therefore, the expression is residual. Please refer to the table Decimal
precision evaluation on page 185.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

AW31 Decimal precision < 10 (column ..) incompatible with INTEGER (column ..). Expression not
sargable.

Reason:

One of the predicate columns is DECIMAL with precision < 10 and the other column is INTEGER.
Therefore, the expression is residual. Please refer to the table Decimal precision evaluation on page
185.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

AW32 Decimal precision < 10 (column ..) incompatible with INTEGER (hostvar ..). Expression not

sargable.

Reason:

One of the predicate elements is a DECIMAL column with precision < 10 and the other element is
an INTEGER hostvar. Therefore, the expression is residual. Please refer to the table Decimal
precision evaluation on page 185.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

SQL Command Analysis Page 161

AW34 No predicate specifications for trailing column(s) of plan index ..

Reason

The plan index is a composite index and the predicate does not contain references for trailing index
columns. For instance: the index is defined on columns C1 and C2 and the predicate references C1
but not C2.

Action

If the omitted columns are not significant in the conditions stated by the predicate, this warning
should be ignored. Otherwise, specify the missing columns.

AW35 No predicate specifications for column(s) of plan index ..

Reason

The predicate does contain indexing column references (otherwise message AW23 would have been
produced), but the DB2 optimizer has opted for another table index (the "plan index"). No columns
of this index are referenced in the predicate.

Action

In most cases, you should examine why the intended index is not used. If that index is composite, you
probably do not specify all the indexing columns. The index could also have been discarded due to
its unclustered state or its weak clustering ratio.

AW36 BETWEEN is a more selective operator than ..

Reason

The predicate contains a range operator such as >, <, >= or <=. Such predicates are less selective than
BETWEEN. See the table Default filter factor on page 187.

Action

Replace the range operator indicated in the message with a BETWEEN or LIKE clause.

AW37 Predicate uses columns of the same table

Reason

The predicate has the form T1.column_1 <operator> T1.column_2. Such predicates are no key-
matching candidates and they are not sargable.

Action

Try to formulate the query so that different tables are used within the same predicate expression.
Consider replacing the COL=COL form with a COL=HOSTVAR specification.

Page 162 SQL Command Analysis

AW38 Predicate using indicator variables is not sargable

Reason

Predicates with indicators are resolved by the Relational Subsystem, not by the Database Subsystem.
Additional processing overhead will be involved.

Action

There is usually no reason for using indicator variables in predicates, since the "unknown" predicate
state is functionally equivalent to the "false" state, that is, both are not "true".

AW39 JOIN is usually more efficient than a subquery

Reason

A join access often outperforms a nested quey.

Action

Many nested queries can be formulated as a JOIN.

AW40 All predicates residual due to residual OR-ed predicate

Reason

A query contains multiple predicates and at least one of them is connected (at the outer level) by
means of the OR connector. All non-OR-ed predicates are sargable, but one or more of the OR-ed
predicates is not. This makes the whole predicate non-sargable.

For example :

WHERE C1=5 OR C2=C3

If C1, C2 and C3 are columns of the same table:

C1=5 is sargable
C2=C3 is residual (and you get warning AW37)

Due to the OR connector however, the entire predicate is residual.

Action

Try to avoid OR-ed predicates. If you can't, try to make the OR-ed predicate residual. In most cases,
you will have an SQL/CA warning indicating why that predicate is residual.

SQL Command Analysis Page 163

AW41 UNION ALL may avoid unnecessary sort

Reason

Multiple UNION's are specified. Since UNION eliminates duplicate rows, multiple sorts are
possible. These sorts can be avoided by replacing all UNION's, except for the last one, by UNION
ALL. UNION ALL does not eliminate duplicates.

Action

Specify UNION ALL except for the last UNION.

For example:

SELECT_1
UNION
SELECT_2
UNION
SELECT_3

may cause 2 sorts

The above command can be replaced with:

SELECT_1
UNION ALL
SELECT_2
UNION
SELECT_3

and will perform 1 sort

Page 164 SQL Command Analysis

AW42 One or more predicates should be specified before the subquery.

Reason:

The command contains a subquery and other predicates are specified AFTER the subquery.

For example :

SELECT ... FROM T
WHERE C1 = 1
AND C2 IN (SELECT... FROM T2)
AND C3 = 3

Action:

It is best to specify all normal predicates BEFORE the subquery. This will reduce the number of
qualifying rows that is passed to the subquery. In the above example C3 = 3 should be placed before
the subquery.

AW43 MIN/MAX function is less efficient due to presence of WHERE clause

Reason:

The MIN/MAX functions can be executed using an index-only access. Moreover, the MIN function
can retrieve the required value directly from the first index entry. The MAX function can retrieve the
value directly from the last index entry.

The presence of a WHERE clause requires a complete index scan and possibly access to data pages
when the predicate column is not in the index.

Action:

Omit the WHERE clause, if possible.

AW44 MIN/MAX function is less efficient because <column-name> if not the first column in the
index

Reason:

The MIN function can retrieve the required value directly from the first index entry. The MAX
function can retrieve the value directly from the last index entry. In both cases, the named column
must be the first or only column in the index.

Action:

Specify MIN/MAX for the first index column, if possible.

AW45 MAX function is less efficient because index column <column-name> allows NULL values

Reason:

SQL Command Analysis Page 165

The MAX function can retrieve the MAX value directly from the last index entry, provided the
column has been defined as not null. If the column allows nulls, the null index entries appear in the
index after the highest not null entries. Hence, a fast "locate last" cannot be performed.

Action:

Redefine the column with the NOT NULL attribute, if possible.

AW46 MIN/MAX function is less efficient because <column-name> is not a column in the plan
index

Reason:

The index used in the SQL command does not have the named column as the first index column.
Therefore, fast index locate is not used.

Action:

Attempt to rewrite the command, so that the index containing the column specified in the MIN/MAX
function, is used for access.

AW47 Full table join performed because no local join predicates specified

Reason:

The join command does not contain predicates other than the join predicate.

Action:

Unless a full table join is intended, specify other predicates in the WHERE clause, to decrease the
number of table rows participating in the join.

Page 166 SQL Command Analysis

AW48 A sort can be avoided if the ORDER BY clause specifies all columns of the plan index
<index-name> in the same sequence

Reason:

The plan index used allows to avoid ORDER BY processing (additional sort). However, all columns
of the plan index must appear in the ORDER BY clause in the same sequence as defined for the
index. If not, a sort will be performed at the end of the query.

For example: if the plan index is on C1,C2

SELECT C1,C2 FROM table
WHERE C1 = ...
ORDER BY C2

will not avoid a sort

SELECT C1,C2 FROM table
WHERE C1 = ...
ORDER BY C1,C2

will avoid a sort

Action:

Specify all index columns on the ORDER BY clause (unless another sequence is desired).

AW49 <column-name> missing

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW49 warning
indicates that the index column <column-name> is not keymatching, because it is not referenced in
the predicate.

For example:

Given an index C1,C2,C3,

the predicate WHERE C1 = x AND C2 = y will result in warning AW49 for column C3.

Action:

Specify the missing column if possible.

SQL Command Analysis Page 167

AW50 <column-name1> discarded by missing column <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW50 warning
indicates that the index column <column-name1> is not key-matching because the column
<column-name2> that precedes it in the index definition, is missing.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 = x AND C3 = y

will result in warning AW50, indicating that C3 cannot be used for key-matching because C2 is
missing.

Action:

Specify the missing column if possible.

AW51 <column-name1> discarded by non-keymatching column <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW51 warning
indicates that the index column <column-name1> is not keymatching because the column
<column-name2> that precedes it in the index definition, is not key-matching. Warning AW54 will
have been issued for column-name2.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 <> x AND C2 = y

will result in warning AW51, indicating that C2 (although a keymatching expression itself) cannot
be used for keymatching because it follows a non-keymatching expression on C1.

Action:

If possible, make the expression on column-name2 keymatching (cfr AW54).

Page 168 SQL Command Analysis

AW52 <column-name1> discarded by non-sargable column <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW52 warning
indicates that the index column <column-name1> is not keymatching because the column
<column-name2> that precedes it in the index definition, is not sargable and therefore not
key-matching. Warning AW55 will have been issued for column-name2.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 = (:V*2) AND C2 = y

will result in warning AW52, indicating that C2 (although a keymatching expression itself) cannot
be used for key-matching because it follows a non-sargable and therefore non-keymatching
expression on C1.

Action:

If possible, make the expression on column-name2 sargable (cfr AW55).

SQL Command Analysis Page 169

AW53 <column-name1> discarded by range predicate on <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW53 warning
indicates that the index column <column-name1> is not keymatching, because a range predicate has
been coded for column-name2.

For search conditions on composite indexes to be key-matching, all but the last column must be
matched with equal predicates; the last predicate can be either an equal or a range predicate.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 > x AND C2 = y AND C3 = z

will result in warning AW53, indicating that the expressions on C2 and C3 (although themselves
keymatching) have been discarded as keymatching candidates, because a range expression has been
coded for C1.

Action:

Avoid the range predicate, if the application logic allows it.

The performance impact of AW53 may be severe, if the discarded columns are the most selective
ones.

In the above example: if C1 is non-selective, but C2 and C3 are, a large number of rows will be
retrieved for C1 > x, resulting in a high number of I/O's. The predicates on C2 and C3 will be applied
by RDS after receiving the rows qualifying for C1 > x.

In such cases, it may be necessary to define a new index, or to alter an existing one. In the above
example, an index on C2,C3,C1 would perform much better.

Page 170 SQL Command Analysis

AW54 <column-name> non-keymatching

When not all index columns are key-matching (warning AW92 has been issued), the AW54 warning
indicates that the index column <column-name> is not key-matching.

For example:

Given an index C1,C2,C3

the predicate WHERE C1<> x AND C2 = y

will result in warning AW54, indicating that C1 is a non-keymatching expression.

Action:

If possible, make the expression on column-name key-matching (cfr AW16).

AW55 <column-name> non-sargable and non-keymatching

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW55 warning
indicates that the index column <column-name> is not sargable and therefore not key-matching.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 = (:V*2) AND C2 = y

will result in warning AW55, indicating that the expression on C1 is not sargable and therefore not
key-matching.

Action:

If possible, make the expression on column-name sargable. In the above example, the application
should execute the *2 on the hostvariable and specify the predicate as C1 = :V.

SQL Command Analysis Page 171

AW56 Multiple IN operators disable keymatching

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW56 warning
indicates that some expressions, although key-matching themselves, may have been discarded,
because more than one IN operator appears in the predicate.

For example:

Given an index C1,C2,C3 and the predicate

WHERE C1 IN (1,2) AND C2 IN (1,2) AND C3 = x

the expression on C3 will not be considered for key-matching, because more than one IN precedes.

Action:

If possible, avoid using more than one IN operator in a WHERE clause.

Page 172 SQL Command Analysis

AW57 Avoid fetching columns in an EXISTS SELECT with an index-only predicate

Reason:

If the SELECT that follows the (NOT) EXISTS clause, uses indexing columns only to perform the
EXISTS check, there is no reason to fetch columns in this SELECT.

If you do, DB2/VM will unnecessarily access data pages, with a performance degradation as a result.

Action:

Replace the column names with a constant or a special register such as CURRENT DATE. This
ensures that DB2 accesses index pages only when executing the SELECT.

For example:

If both T1 and T2 have an index on C1, the statement:

SELECT COUNT(*) FROM T1 WHERE EXISTS (SELECT * FROM T2 WHERE T1.C1 = T2.C1)

should be coded as:

SELECT COUNT(*) FROM T1 WHERE EXISTS (SELECT 'XXX' FROM T2 WHERE T1.C1 =
T2.C1)

SQL Command Analysis Page 173

AW80 Using scan of DBspace

Reason:

The DB2 explain data show that the command plan will be executed using a scan of the named
DBspace. SQL/CA provides following additional data regarding the DBspace scan:

DBspace pages scanned:
the number of DBspace pages that actually wil be read during the scan, that is the number of active
pages in the DBspace, as found in the SYSDBSPACES catalog.

DBspace scan productivity:
a percentage computed to represent the number of DBspace pages read that belong to the table
referred to by the command plan.

Action:

While in some cases a DBspace (or relational) scan may be the most plausible access method (a small
table residing in a dedicated DBspace for instance), it is problematical in most cases. It may be due
to various reasons such as:

- the absence of table indexes
- the unclustered state of the table indexes
- a high estimate for the number of rows satisfying the command predicate
- syntactical expressions prohibiting index eligibility
- a high PCTPAGES value for the table, meaning that the table occupies a large percentage of

pages in the DBspace, so that a DBspace scan seems productive and hence attractive to the
Optimizer

In most cases, other SQL/CA warning messages will have been issued. Use them to determine the
reason of the DBspace scan.

AW81 No indexes for table
AW81 Insert using default rules

Reason:

No indexes have been defined for the table. Therefore, a DBspace scan will be used to access the
table and insert will be done in the last datapage of the table.

Action:

Create a table index, unless the table is small and residing in a dedicated DBspace.

Page 174 SQL Command Analysis

AW82 No highly clustered first index for table

Reason:

The first index of the table is either unclustered or weakly clustered. An index is considered weak by
SQL/CA, when its clustering ratio drops below 6000. (10000 is the highest and best clustering ratio).

Action:

Reorganize the first index or the entire table.

AW83 No indexes found created using current DB2 release

Reason:

All existing table indexes were created by a backlevel release of DB2.

Action:

For best performance, the indexes should be upgraded to the latest release level, by doing a table
reorganization.

AW84 Non-selective index scan

Reason :

All rows of the table are accessed using an index without specific key values, because the first
column of the index key is not specified in the predicate.

In some cases an index scan may be a masked relational scan which may turn into a true DBspace
scan (when the table gets larger for instance).

Access with specific key values is obviously better for performance because less I/O will be done.
See the Glossary on page 133 under SELECTIVE INDEX SCAN.

Action :

Specify the leading columns of the index key, wherever possible. Also check whether enough indexes
are available for the columns appearing in the predicate.

SQL Command Analysis Page 175

AW85 Materialization of view

Reason:

View materialization is a technique used by DB2 since version 3, in order to remove certain
restrictions regarding views. Processing a materialized view implies storing intermediate results into
temporary tables using internal DBspaces. These temporary tables are processed without using
indexes.

Action:

Functionality has to be weighted against performance. An attempt should be made to keep the
response set small.

AW86 Estimated times predicate conditions satisfied

Reason:

The number of times the command predicate is true equals the number of table rows. This means that
the entire table is processed. The message may occur in conjunction with the messages AW80 and
AW84.

Action:

See the suggestions at AW80 and AW84.

Page 176 SQL Command Analysis

AW87 Block executed N times by parent block

Reason:

A child block may be executed once, when the parent block is initiated or it may be executed each
time the parent block is invoked. The latter case is signalled by this warning which computes in N,
the total estimated number of times this block is executed, taking into account its immediate and
remote parent block invocation counts.

Action:

The actual execution time of the block is the product of all preceding parent block execution
iterations. As the number of iterations can become very high, care should be taken. Alternative
predicate statements may produce better results.

For example:

in the command:

SELECT * FROM T1 WHERE C1 IN (SELECT C1 FROM T2)

the SELECT FROM T2 is executed for each row of T1. For a large T1, such SELECT commands
may take hours!

Alternatives would be:

- a JOIN of T1 and T2 (the preferred solution)
- SELECT * FROM T1 X WHERE EXISTS (SELECT C1 FROM T2 WHERE C1=X.C1)
- a correlated query such as SELECT * FROM T1 X WHERE C1 IN (SELECT C1 FROM T2

WHERE C1=X.C1)

AW88 Indexing columns updated by command

Reason:

The column listed is member of an index definition. Updating a column of the primary table or plan
index, using an UPDATE or a SELECT FOR UPDATE command will disqualify indexed access.

Action:

If the named indexing column is not part of the primary table or plan index, a severity 1 warning will
be issued and the warning may be ignored. In the other case, the severity of the warning will be 3 and
the update should be replaced with a DELETE and INSERT sequence. Primary indexing columns
should not appear in a SELECT FOR UPDATE clause, even if the column is not updated actually.
In CSP terms, define indexing columns with the read-only attribute in the SQL record. Alternatively,
remove the indexing column from the FOR UPDATE clause in the CSP process.

SQL Command Analysis Page 177

AW89 Merge scan Join

Reason:

A merge scan join is performed as part of a join plan. Merge scan joins are usually worse for
performance than nested loop joins, since a merge scan join often implies the use of work dataspace
and additional sorting.

Action:

Try to obtain a nested loop join. For example: define an index that allows the Optimizer to access the
inner join table in the required order. Ensure that the available indexes are clustered.

AW90 Outer table larger than inner table.

Reason:

A nested loop join is performed as part of a join plan. Best performance is generally achieved when
the outer table (the first or "composite table") is smaller than the inner table (the second or "new
table"). The tablesizes considered take into account the local (non-join) predicates, since these are
applied by DB2 before initiating the join.

Action:

Specify additional local (non-join) predicates for the outer table in the command's WHERE clause.

AW91 Data pages accessed for predicate and data

Reason:

The predicate cannot be resolved using index page access and all data is retrieved from data pages.

Action:

If the selected data are not available from an index, retrieving data from the data pages is normal. You
should investigate why no index is used for resolving the predicate. If the index contains VARCHAR
columns, the data pages must be accessed.

AW92 Key-matching columns: N out of M

Reason:

The predicate does not specify all columns of the plan index, i.e. N < M.

Action:

Try to specify the missing index columns. You should find their names in warning AW22 or AW34.

AW93 No catalog statistics available for the table

Page 178 SQL Command Analysis

Reason:

No UPDATE STATISTICS command has been issued for the table.

Consequently, no information is available the DB2/VM Optimizer for determining the best data
access path.

Action:

Issue the UPDATE STATISTICS command for the table or DBspace.

AW94 Catalog statistics available for index columns only

Reason:

An UPDATE STATISTICS command has been issued for the table without the ALL option.

Consequently, the DB2/VM Optimizer has statistics for the first column of the indexes only.

Action:

Issuing an UPDATE ALL STATISTICS for the table or DBspace may result in a better access path
being adopted by the DB2/VM Optimizer.

Consider an UPDATE ALL STATISTICS for commands that perform poorly or that do not execute
using the expected access path.

SQL Command Analysis Page 179

15 SQL/CA object notes

All the object warnings are followed by a list of objects, for which the warning applies.

ON01 DBspaces with freespace > 0:

The named DBspaces have the FREEPCT column > 0. Freespace is usually set when initially loading
the DBspace and set then set to 0. This allows INSERT commands to use the DBspace freespace.

ON02 DBspaces with less than 10 active pages and with lockmode not "row":

Very small DBspaces should usually have the row lockmode. Other modes will lock too much data
for each request and will be detrimental for concurrency.

ON03 DBspaces in storage pool 1:

In operational databases, DBspaces should be located in other storage pools. Storage pool 1 should
be reserved for the DB2/VM catalog tables and the internal system DBspaces.

ON04 Tables with more than 10% overflow rows:

Tables with more than 10% overflow rows should be considered for reorganization.

ON05 Tables with less than 10 pages and non-unique indexes:

While indexes can provide faster access, they also impose a considerable overhead, especially during
table update or insert activity. The designated indexes are not required to implement key-uniqueness
or to implement referential constraints. For small tables, residing in a dedicated DBspace, a DBspace
scan is probably the best access strategy.

ON06 Indexes with VARCHAR or VARGRAPHIC columns:

Indexes with VARCHAR or VARGRAPHIC columns prevent index-only access. Even when all data
could be retrieved using the index, data pages must still be accessed for VARCHAR and
VARGRAPHIC columns.

ON07 Indexes where the first column is not the most selective one:

In composite indexes, it is best to define the most selective column as the first index column. For the
designated indexes, non-first columns actually have a better selectivity than the first one.

Note The above message will be issued only when an UPDATE ALL STATISTICS has been
issued for the table, which ensures that the selectivity of all table columns is known. In the
other case, the selectivity of the first index column only is known.

Page 180 SQL Command Analysis

SQL Command Analysis Page 181

 The rationale behind this: when comparing an INTEGER column and a SMALLINT variable; the18

variable contents can never exceed the magnitude of the column and a simple comparison is sufficient.
When comparing a SMALLINT column with an INTEGER variable, the variable contents can exceed
the magnitude of the column and a more sophisticated comparison is needed. The latter comparison
cannot be performed by the DBSS (which basically performs byte-wise comparisons). It has to be carried
out by the RDS. Therefore, an incompatible expression is never sargable.

16 Predicate evaluation tables

16.1 Datatype evaluation table

The following table illustrates the rules governing datatype compatibility. Datatype combinations
marked Y are compatible. Those marked N are not compatible.

For example: comparing an INTEGER column with a SMALLINT host variable adheres to the
compatibility rules. Comparing a SMALLINT column with an INTEGER host variable violates these
rules.18

Column Hostvar Hostvar Hostvar Hostvar Hostvar
Type SMALLINT INTEGER DECIMAL REAL FLOAT

SMALLINT Y N N N N

INTEGER Y Y N N N

DECIMAL Y Y Y N N

REAL Y Y Y Y N

FLOAT Y Y Y Y Y

16.2 Decimal precision evaluation table

The following table defines the rules which the datatype, precision and scale of decimal columns and
hostvars must adhere to, in order to be sargable.

Column SMALLINT INTEGER DECIMAL(k,l)
Type Hostvar Hostvar Hostvar

DECIMAL(m,n) ensure: ensure: ensure:
m>=4 and n=0 m>=10 and n=0 m>=k and n=l

Page 182 SQL Command Analysis

 Q is one of the quantifiers ANY, ALL or SOME19

16.3 Predicate operator evaluation table

OPERATOR KEYMATCH SARGABLE DEFAULT FILTER

= yes yes 0.040

> < >= <= value yes yes 0.333

BETWEEN yes yes 0.100

IS NULL yes yes 0.040

IN(valuelist) yes yes 0.040*(size-of-list)

LIKE char yes yes 0.100

= Q (query)19 yes yes 0.040

> < >= <= Q (query) yes yes 0.333

<> Q (query) no yes 0.960

<> value no yes 0.960

IS NOT NULL no yes 0.960

= (query) no no 0.040

<> (query) no no 0.960

> < >= <= (query) no no 0.333

= expression no no 0.040

<> expression no no 0.960

> < >= <= expression no no 0.333

[NOT] IN(query) no no 1.000

LIKE pattern no no 0.100

LIKE host variable no no 0.100

NOT BETWEEN no no 0.900

NOT IN(valuelist) no no 1-(0.040*(size-of-list))

NOT LIKE no no 0.900

SQL Command Analysis Page 183

16.4 Default filter factor table

Distinct table column values Range filter factor LIKE/BETWEEN filter factor

>= 100 000 000 0.0001 0.00003

>=10 000 000 0.0003 0.0001

>=1 000 000 0.001 0.0003

>= 100 000 0.003 0.001

>= 10 000 0.01 0.003

>= 1 000 0.033 0.01

>= 100 0.1 0.03

< 100 0.333 0.1

= -1 0.333 0.1
(no COLCOUNT available)

Page 184 SQL Command Analysis

SQL Command Analysis Page 185

17 EXPLAIN tables usage by SQL/CA

SQL/CA must have exclusive control over the EXPLAIN tables used during analysis. Which EXPLAIN
tables are used depends on the DB2/VM userid active during EXPLAIN. This userid becomes the creator
of the explain tables: it can be specified in different ways on the SQL/CA menus.

Due to the method used by SQL/CA for accessing the EXPLAIN tables, it is not possible for the user to
maintain its own explain output in those tables. These data will be cleared by SQL/CA at the next analysis
request.

Page 186 SQL Command Analysis

SQL Command Analysis Page 187

18 EXPLAIN performance

Generally, the EXPLAIN tables have very few rows and are best processed by a DBspace scan. For
optimal performance, the user's 4 EXPLAIN tables should be created in a dedicated DBspace and no
indexes should be defined on them.

Page 188 SQL Command Analysis

SQL Command Analysis Page 189

19 Alias usernames

19.1 Functional Description

In some cases, it may be desirable that users perform program analysis using a DB2/VM
authorization ID, other than their own. For example, several developers within a team may use the
same DB2/VM userid when preprocessing their programs. This facilitates authorization management
and allows developers to work on each other's programs and use each other's tables. In such cases,
analysis must also be done under the common DB2/VM username. The alias facility allows the
system administrator to define each of these users in the SQLCA CONNECT file and specify the
DB2/VM username and password to be used by SQL/CA when the user forwards an analysis request.
Since the CONNECT file contains sensitive data (the user password), it is kept in encrypted format
by SQL/CA. The CONNECT file should be on a minidisk or in a directory that is accessible to the
users during analysis. It may be placed on the disk containing the SQL/CA software material for
instance.

19.2 Defining an alias

To define (or remove) an alias, access the minidisk or directory containing the SQLCA CONNECT
file in filemode A. Issue SQLCALIA on the CMS prompt. The program saves the current SQLCA
CONNECT as SQLCA CONNECTS. Then, the SQLCA CONNECT file is decrypted into a file
named CONNECT INPUT. The CONNECT INPUT file is then XEDITed. Use XEDIT commands
to insert (or remove) records that define the alias names. Issuing XEDIT file will encrypt and copy
the CONNECT INPUT file to SQLCA CONNECT. The alias definitions take effect from this
moment on.

Each alias description line has the following syntax:

CONNECT user_name TO database_name AS alias_name alias_password

Meaning: when user_name connects to database_name, connect should be done automatically by
SQL/CA, using alias_name and alias_password. If user_name is specified as *, all users connect
to the database under the alias name.

SQL/CA scans the SQLCA CONNECT file sequentially and stops its search for alias replacements
when a line is found where both user_name and database_name are matching.

For example: to allow a number of DB2/VM developers named SQLDEV1 thru SQLDEVn to
connect under the common SQLDEV username, following lines should be coded in the CONNECT
file:

- CONNECT SQLDEV1 TO DBTEST AS SQLDEV SQLDEVPW
- other CONNECTs
- CONNECT SQLDEVn TO DBTEST AS SQLDEV SQLDEVPW

Page 190 SQL Command Analysis

SQL Command Analysis Page 191

20 Migrating to SQL/DS Version 3 Release 4

SQL/DS Version 3 Release 4 provides an enhanced EXPLAIN table structure. SQL/Command Analysis
can process the EXPLAIN tables of SQL/DS versions before Version 3 Release 4 and those of Version
3 Release 4. During analysis, the DB2/VM release level is determined and the appropriate logic modules
of SQL/CA are loaded accordingly. During installation, all support modules are installed. When
migrating, nothing has to be done, except re-creating the user's explain tables, so that they conform to the
new structure. To create the new tables, you can use the corresponding option of the SQL/CA main menu,
which is release sensitive, that is, the explain tables will be created depending on the DB2/VM release
actually installed.

Page 192 SQL Command Analysis

SQL Command Analysis Page 193

21 Dynamic SQL/CA packages

After issuing the EXPLAIN command, SQL/CA has to process the EXPLAIN tables of the user. This
cannot be achieved in static mode, since the creator of the EXPLAIN tables is unknown at preprocessing
time. Instead, SQL/CA creates an extended dynamic package, the first time a user invokes Command
Analysis. This package is named userid.SQLCAXUX or userid.SQLCAXU2 (for SQL/DS Version 3.4
and later). These packages are managed in the same manner as static packages. If a package is dropped,
it is automatically recreated by SQL/CA at the next analysis.

Page 194 SQL Command Analysis

SQL Command Analysis Page 195

22 SQL/CA messages

Note

RC ... in the following message texts refers to the hexadecimal representation of the error code presented
by the CMS file system during various stages of SQL/CA processing. A detailled description of these
codes can be found in the IBM manual "CMS Macros and Function Reference" (paragraphs on the
FSREAD and FSWRITE macros). The most likely errorcode after FSWRITE is 0D (A-disk full).

SQLCA001: RC ... AFTER FSREAD

Error when reading the application source file.

SQLCA002: RC ... AFTER FSWRITE

Error when writing the explain workfile.

SQLCA003: Application nnnn does not contain static SQL statements

The analyzed source does not contain static (prepped) analysable SQL statements at all.

SQLCA004: UPDATING STATISTICS FOR TABLE

Issued when performing the UPDATE STATISTICS SQL command for a table referenced in an
application SQL command.

SQLCA005: RC ... AFTER FSWRITE

Error when writing the explain report file.

SQLCA006: RC ... AFTER HVWRITE

Error when writing the "host variable" workfile.

SQLCA007: SQLCODE ... WHEN CONNECTING DATABASE

Issued when CONNECT to the SQL/CA archive database fails.

SQLCA008: RETURNCODE x FROM SQLCPEX

If x = 8 or 12, CMS storage request fails when processing internal lists. Enlarge your virtual storage
size.

Page 196 SQL Command Analysis

SQLCA009: RC ... AFTER FSREAD

Error when reading the CSP application source.

SQLCA010: RC ... AFTER FSWRITE

Error when writing the explain workfile for CSP applications.

SQLCA011: ALL HOSTVAR REFERENCES REPLACED WITH CONSTANTS.

Issued when the SQL EXPLAIN command results in an SQLCODE indicating incompatible
parameter marker usage. All hostvar references are then replaced by SQL/CA with a constant
specification of the corresponding format and EXPLAIN is retried with the modified application
command.

Hostvars and parameter markers are compatible, except for a number of cases, described in the IBM
manual "DB2 Application Reference" (PREPARE command).

SQLCA012: TABLE (creator) tablename DOES NOT EXIST

The DB2 object name extracted from the SQL command is neither a table, a view or a synonym.
Analysis for the application is aborted.

SQLCA013: BASE TABLE (creator) tablename DOES NOT EXIST

The application command references a view. When processing the view definition, SQL/CA is unable
to locate the underlying table. Analysis for the application is aborted.

SQLCA014: UNABLE TO LOCATE INDEX indexname

The indexname occurring in the explain PLAN table is not found in the SQL/CA index list. This is
probably an SQL/CA system error.

SQLCA015: RC ... AFTER FSREAD

Read error on SQLDBSU unload file during DB2 analysis.

SQLCA016: RC ... AFTER FSWRITE

Write error when creating the analysis workfile during DB2 analysis.

SQL Command Analysis Page 197

SQLCA017: SQLCODE ... ON EXPLAIN COMMAND

An SQLCODE has been returned when invoking SQL EXPLAIN for the application command
displayed immediately before the above message. The application command is probably in error.

Press ENTER to continue with the analysis of the remaining application commands. The application
command in error will not appear in the analysis report.

The above message may be signalled for SQL commands appearing in a CSP process that enables
the "execution time statement build" option, if the command text of the process is such that execution
time insertion of a CSP variable into the command is required to yield valid SQL syntax, for example
when the WHERE clause is dynamically built by the application. If you wish to analyze such
command, modify it in the CMS file <application CSPAPPL A> which is built by SQL/CA during
analysis of CSP applications. Then execute SQLCA against this CMS file using the option "Analyze
non_CSP application".

SQLCA099: Access denied.

The executing VM userid has not received an explicit authorization on SQL/CA.

Request your system administrator to add you to the SQL/CA authorization list.

Page 198 SQL Command Analysis

SQL Command Analysis Page 199

 This program can be found as SQLCADMO PLIOPT on the SQL/CA product disk.20

23 SQL/CA sample analysis report

The following PL/1 sample program contains several violations of DB2 coding rules. 20

EXEC SQL SELECT * FROM SQLDBA.INVENTORY
FOR UPDATE OF PARTNO,DESCRIPTION,QONHAND;

EXEC SQL SELECT * FROM SQLDBA.INVENTORY
WHERE PARTNO/1000 =:PARTGROUP;

EXEC SQL SELECT SQLDBA.INVENTORY.PARTNO, DESCRIPTION, PRICE
FROM SQLDBA.INVENTORY, SQLDBA.QUOTATIONS
WHERE
SQLDBA.INVENTORY.PARTNO=SQLDBA.QUOTATIONS.PARTNO
AND SUPPNO=51;

EXEC SQL SELECT * FROM SQLDBA.INVENTORY
WHERE QONHAND >:QONHAND;

EXEC SQL SELECT SUPPNO FROM SQLDBA.QUOTATIONS Q
GROUP BY SUPPNO HAVING SUM(QONORDER) >=
(SELECT AVG(QONORDER) FROM SQLDBA.QUOTATIONS
WHERE SUPPNO=Q.SUPPNO);

EXEC SQL BEGIN DECLARE SECTION;
DECLARE PARTGROUP BIN FIXED(15);
DECLARE QONHAND BIN FIXED(15);
DECLARE PARTNO BIN FIXED(31);
EXEC SQL END DECLARE SECTION;

When this program is submitted for analysis, the following analysis report will be produced.

Page 200 SQL Command Analysis

 --
Cust : CATEST
File : SQLCADMO PLIOPT A1 Line nr 2 User=SQLAF
Date : 94/04/19 16:10:55 ArchQno = 501 Dbase=CATEST
 --

 COMMAND EXECUTION STRUCTURE BY BLOCK AND PARENT

 BLK Par Command Text

 1 0 SELECT * FROM SQLDBA.INVENTORY FOR UPDATE OF PARTNO,DESCRIPTION,
 QONHAND

 COMMAND COST SUMMARY

 Total Command Cost : 18 (ISQL like Cost : 1)

 COMMAND EXECUTION STRUCTURE

 Estimated number of rows SELECTed : 22 out of 22
 Estimated global command filter factor : 1
 >>> AW86 Estimated times predicate conditions satisfied : 22

 COMMAND EXECUTION DETAIL

 Plan : 1

 >>> AW80 Access : Scan of DBspace SAMPLE
 DBspace pages scanned : 8
 DBspace scan productivity : 13%
 Score : 0
 Sort : New table not sorted.

 >>> AW88 Indexing columns updated by command :

 PARTNO : Column 1 in Index SQLDBA.INV1
 on Table SQLDBA.INVENTORY
 PREDICATE ANALYSIS WARNINGS

 >>> AW23 No index columns referenced in the command predicate for table
 (SQLDBA) INVENTORY.

SQL Command Analysis Page 201

 --
 Cust : CATEST
 File : SQLCADMO PLIOPT A1 Line nr 5 User=SQLAF
 Date : 94/04/19 16:10:56 ArchQno = 502 Dbase=CATEST
 --

 COMMAND EXECUTION STRUCTURE BY BLOCK AND PARENT

 BLK Par Command Text

 1 0 SELECT * FROM SQLDBA.INVENTORY WHERE PARTNO/1000 =:PARTGROUP

 COMMAND COST SUMMARY

 Total Command Cost : 11 (ISQL like Cost : 1)

 COMMAND EXECUTION STRUCTURE

 Estimated number of rows SELECTed : 22 out of 22
 Estimated global command filter factor : 1
 >>> AW86 Estimated times predicate conditions satisfied : 22

 COMMAND EXECUTION DETAIL

 Plan : 1

 >> AW84 Access : Non-selective index scan
 using first, highly clustered, unique index
 INV1 ON +PARTNO
 Score : 3
 Sort : New table not sorted.

 PREDICATE ANALYSIS WARNINGS

 PARTNO/1000=:PARTGROUP

 >>> AW01 Expression on index column PARTNO is suboptimal.

Page 202 SQL Command Analysis

 --
 Cust : CATEST
 File : SQLCADMO PLIOPT A1 Line nr 8 User=SQLAF
 Date : 94/04/19 16:10:58 ArchQno = 503 Dbase=CATEST
 --

 COMMAND EXECUTION STRUCTURE BY BLOCK AND PARENT

 BLK Par Command Text

 1 0 SELECT SQLDBA.INVENTORY.PARTNO,DESCRIPTION,PRICE FROM SQLDBA.INVENTORY,
 SQLDBA.QUOTATIONS WHERE
 SQLDBA.INVENTORY.PARTNO=SQLDBA.QUOTATIONS.PARTNO AND SUPPNO=51

 COMMAND COST SUMMARY

 Total Command Cost : 22 (ISQL like Cost : 1)

 COMMAND PLAN SUMMARY

 Qry Plan

 1 1 Selective index scan of table QUOTATIONS
 1 2 Nested loop join using
 selective index scan of table INVENTORY

 COMMAND EXECUTION STRUCTURE

 Estimated number of rows SELECTed : 3 out of 75
 Estimated global command filter factor : 0.040000
 Estimated times predicate conditions satisfied : 1

 COMMAND EXECUTION DETAIL

 Plan : 1

 Access : Selective index scan
 using first, highly clustered, unique index
 QUO1 ON +SUPPNO +PARTNO
 Score : 4
 Sort : New table not sorted.

 COLUMN REFERENCE DETAILS

 Table : SQLDBA.QUOTATIONS
 Column : PARTNO
 Filtering factor : 0.045
 Estimated table rows filtered : 2.385 out of 53
 Appears in WHERE clause such that index can be used.
 Used as a JOIN column.
 Column : SUPPNO
 Filtering factor : 0.074
 Estimated table rows filtered : 3.922 out of 53
 Appears in WHERE clause such that index can be used.

SQL Command Analysis Page 203

 Plan : 2

 Method : Nested loop JOIN.
 Access : Selective index scan
 using first, highly clustered, unique index
 INV1 ON +PARTNO
 Score : 4
 Sort : New table not sorted.
 Composite not sorted.
 Number of rows in inner table : 22
 Number of rows in outer table : 2.385

 COLUMN REFERENCE DETAILS

 Table : SQLDBA.INVENTORY
 Column : PARTNO
 Filtering factor : 0.045
 Estimated table rows filtered : 0.990 out of 22
 Appears in WHERE clause such that index can be used.
 Used as a JOIN column.

Page 204 SQL Command Analysis

 --
 Cust : CATEST
 File : SQLCADMO PLIOPT A1 Line nr 13 User=SQLAF
 Date : 94/04/19 16:10:59 ArchQno = 504 Dbase=CATEST
 --

 COMMAND EXECUTION STRUCTURE BY BLOCK AND PARENT

 BLK Par Command Text

 1 0 SELECT * FROM SQLDBA.INVENTORY WHERE QONHAND >:QONHAND

 COMMAND COST SUMMARY

 Total Command Cost : 6 (ISQL like Cost : 1)

 COMMAND EXECUTION STRUCTURE

 Estimated number of rows SELECTed : 7 out of 22
 Estimated global command filter factor : 0.318181
 Estimated times predicate conditions satisfied : 7.333

 COMMAND EXECUTION DETAIL

 Plan : 1

 >> AW84 Access : Non-selective index scan
 using first, highly clustered, unique index
 INV1 ON +PARTNO
 Score : 3
 Sort : New table not sorted.

 COLUMN REFERENCE DETAILS

 Table : SQLDBA.INVENTORY
 Column : QONHAND
 Filtering factor : 0.333
 Estimated table rows filtered : 7.326 out of 22
 Appears in WHERE clause such that index can be used.

 PREDICATE ANALYSIS WARNINGS

 QONHAND>:QONHAND

 > AW19 Range predicates used with hostvars may disqualify the index.
 > AW03 Datatype INTEGER of column QONHAND not compatible with datatype
 DECIMAL of hostvar QONHAND.
 > Expression is not sargable.
 > AW18 Default filter factor used for range predicate is 0.333.
 > AW36 BETWEEN is a more selective operator than >.
 >>> AW23 No index columns referenced in the command predicate for table
 (SQLDBA) INVENTORY.

SQL Command Analysis Page 205

 --
 Cust : CATEST
 File : SQLCADMO PLIOPT A1 Line nr 16 User=SQLAF
 Date : 94/04/19 16:11:01 ArchQno = 505 Dbase=CATEST
 --

 COMMAND EXECUTION STRUCTURE BY BLOCK AND PARENT

 BLK Par Command Text

 1 0 SELECT SUPPNO FROM SQLDBA.QUOTATIONS Q GROUP BY SUPPNO HAVING
 SUM(QONORDER) >= (
 2 1 SELECT AVG(QONORDER) FROM SQLDBA.QUOTATIONS WHERE SUPPNO=Q.SUPPNO)

 COMMAND COST SUMMARY

 Blk Single_Cost Exec_Times Multi_Cost SQL_Cost

 1 56.000 1.000 56.000 1169.000
 2 21.000 53.000 1113.000 21.000

 Total Command Cost : 1169 (ISQL like Cost : 2)
 Highest Subquery Cost : 1113 (Block 2)

 COMMAND PLAN SUMMARY

 Qry Plan
 1 1 Non-selective index scan of table QUOTATIONS
 2 1 Non-selective index scan of table QUOTATIONS

 BLK 1 : SELECT SUPPNO FROM SQLDBA.QUOTATIONS Q GROUP BY SUPPNO HAVING
 SUM(QONORDER) >= (

 COMMAND EXECUTION STRUCTURE

 Estimated number of rows SELECTed : 53 out of 53
 Estimated global command filter factor : 1
 >>> AW86 Estimated times predicate conditions satisfied : 53

 COMMAND EXECUTION DETAIL

 Plan : 1

 >> AW84 Access : Non-selective index scan
 using first, highly clustered, unique index
 QUO1 ON +SUPPNO +PARTNO
 Score : 3
 Sort : New table not sorted.

 COLUMN REFERENCE DETAILS

 Table : SQLDBA.QUOTATIONS
 Column : SUPPNO
 Appears in GROUP BY clause on position 1.

Page 206 SQL Command Analysis

 PREDICATE ANALYSIS WARNINGS

 SUM(QONORDER)>=(

 > AW16 Predicate operator >= is not a key-matching candidate.
 > AW17 Predicate operator >= is not sargable.
 >>> AW23 No index columns referenced in the command predicate for table
 (SQLDBA) QUOTATIONS.

 BLK 2 : SELECT AVG(QONORDER) FROM SQLDBA.QUOTATIONS WHERE SUPPNO=Q.SUPPNO)

 COMMAND EXECUTION STRUCTURE

 Estimated number of rows SELECTed : 3 out of 53
 Estimated global command filter factor : 0.056603
 >>> AW86 Estimated times predicate conditions satisfied : 53
 Estimated execution iteration by ancestor blocks : 53
 >> AW87 Block executed 53 times by parent block 1

 COMMAND EXECUTION DETAIL

 Plan : 1

 >> AW84 Access : Non-selective index scan
 using first, highly clustered, unique index
 QUO1 ON +SUPPNO +PARTNO
 Score : 3
 Sort : New table not sorted.

 COLUMN REFERENCE DETAILS

 Table : SQLDBA.QUOTATIONS
 Column : SUPPNO
 Filtering factor : 0.074
 Estimated table rows filtered : 3.922 out of 53

 PREDICATE ANALYSIS WARNINGS

 > AW39 JOIN is usually more efficient than a subquery.
 > AW34 No predicate specifications for trailing column(s) PARTNO of
 plan index QUO1.

SQL Command Analysis Page 207

 TABLE LIST

 Creator Tablename DBspace RowL Rows/Pg NrPag %Pag Depend

 SQLDBA INVENTORY SAMPLE 21 194 1 13 0
 SQLDBA QUOTATIONS SAMPLE 24 170 1 13 0

 TABLE COLUMN SELECTIVITY LIST

 Table Name Column Name Distinct Values Indexing Column

 SQLDBA.INVENTORY PARTNO 100% Yes

 SQLDBA.QUOTATIONS PRICE 90% Yes
 SQLDBA.QUOTATIONS PARTNO 41% Yes
 SQLDBA.QUOTATIONS DELIVERY_TIME 37% No
 SQLDBA.QUOTATIONS QONORDER 20% No
 SQLDBA.QUOTATIONS SUPPNO 16% Yes

 TABLE INDEX LIST

 Table Name Index Name ClustR 1st Uni Index Columns

 INVENTORY INV1 100 Yes Yes +PARTNO
 QUOTATIONS QUOPRICE 100 No No +PRICE
 QUOTATIONS QUO1 100 Yes Yes +SUPPNO +PARTNO

 OBJECT RELATED NOTES

 ON02 DBspaces with less than 10 active pages and lockmode not = "row" :
 PUBLIC.SAMPLE

 ON03 DBspaces in storage pool 1 :
 PUBLIC.SAMPLE

 ON05 Tables with less than 10 pages and non-unique indexes :
 SQLDBA.QUOTATIONS

 ANALYSIS SUMMARY

 Highest command cost : 1169
 DBspace scans : 1
 Non-selective index scans : 4
 Average access score : 2.857
 Severity 3 warnings : 10
 Severity 2 warnings : 5
 Severity 1 warnings : 8

Page 208 SQL Command Analysis

SQL Command Analysis Page 209

Index

Analysis
Delayed . 4, 43, 47
Interactive . 3, 42, 56, 80, 82, 88, 128, 130, 135
Report . . . 1, 4-8, 12-16, 19, 43, 46, 47, 54, 57-61, 74-78, 80-82, 87, 105, 117, 130-132, 201, 203
Server-mode . 18, 19, 37, 41, 47, 48, 80, 82
Source text . 7, 8, 45, 55
Summary . 5, 14, 211
Table oriented . 3, 42, 57
Warnings . 149

Analysis report
Copying . 19
Editing . 16, 58
Interpreting . 1, 6, 87
Object lists . 13
Printing . 16, 60
Saving . 16
Severity code . 10, 12, 81, 130, 131, 149-155, 157

Archiving
Archive tables . 15, 27, 28, 35, 36, 42, 46, 62, 63, 75, 107, 117, 130, 145
Facility . 15, 28, 33, 107
Import archived query . 15, 36, 74, 75
Queries . 15, 29, 36, 63

Automatic statistics . 34, 80, 103, 104, 112, 115, 116
Batch facility . 37, 103, 104, 130

Comment statement . 110
CONNECT statement . 28, 111
DBSPACE statement . 116
Executing a VM or CMS command . 118
MONITOR statement . 117
STATISTICS statement . 112
TABLES statement . 115
User exit . 21, 38, 113, 119

CSP
Applications . 3, 30, 31, 42, 49, 55, 84, 85, 145, 146, 200, 201
MSL . 7, 31, 85

Database
Connect . 74, 75
Database Services . 7, 45
Switching . 15

DBSPACE
Scan . . 5, 9, 10, 12, 14, 15, 17, 21, 39, 63, 65, 75, 93, 95, 101, 117, 133, 134, 136, 138, 142, 147,

157, 176, 177, 183, 191, 204
Scan productivity . 5, 9, 93, 136, 176, 204

Easytrieve . 7, 42, 45
Environment . 7, 13, 18, 30, 44, 84, 105
Explain . 1, 8-10, 15, 17, 18, 33, 37, 39, 41, 46, 71, 72, 74, 75, 81, 87, 88, 91, 98, 100, 104, 134, 135,

137, 140, 145, 176, 189, 191, 195, 197, 199-201
Explain tables . 8, 37, 39, 41, 74, 75, 87, 91, 145, 189, 191, 195, 197

Page 210 SQL Command Analysis

Cost table . 135
Plan table . 90, 200
Reference table . 72, 98, 100
Structure table . 71, 91, 137

Functional description . 1, 7, 40, 46, 193
Glossary . 1, 5, 6, 12, 14, 16, 58, 74, 96, 100, 133, 156, 177
Help . 14, 42-44, 62, 74, 157
Host variables . 12, 19, 45, 136, 157
Index . 11

Clustered index . 95, 101, 124, 134, 142, 143
Index definition . 14, 170, 171, 179
Index disqualified . 138
Index reorganization . 21, 113, 143
Index scan 9, 10, 12, 15, 63, 65, 90, 93-95, 101, 133, 134, 138, 140, 142, 158, 159, 167, 177, 205-

210
Indexing column . 12, 44, 67, 143, 149-155, 157, 163, 179, 211
Unclustered index . 21, 143
Weakly clustered index . 143

Installation . 25-29, 32, 49, 86, 107, 120, 129, 195
Invoking SQL/CA

From the command menu . 42, 71
On a CMS filelist . 3, 4, 14, 78
On the CMS prompt . 3, 25, 28, 37, 40, 42, 60, 76, 82, 193

ISQL . 5, 7, 27, 29, 36, 42, 53, 63, 88, 135, 157, 204-206, 208, 209
Messages . 1, 6, 14, 38, 47, 102, 109, 149, 176, 178, 199
Package analysis . 54, 82
Performance . . . 7, 11, 12, 15, 37, 39, 65, 75, 88, 94, 139, 141, 149, 160, 172, 175, 177, 178, 180, 191
Predicate

Datatype compatibility . 11, 185
Filter factor 5, 9, 12, 67, 91, 98, 100, 136, 137, 142, 147, 157, 163, 187, 204-206, 208-210
Operator 11, 12, 67, 98, 133, 136, 137, 142, 149, 156, 157, 163, 164, 174, 186, 208, 210
Residual . 67, 141, 142, 161, 162, 165
Selectivity . 9, 12, 91, 98, 100, 137, 157, 183, 211

Predicates
Sargable . . 9, 11, 12, 67, 98, 100, 139, 142, 149-156, 158, 160-162, 164, 165, 171, 173, 185, 186,

208, 210
Prep . 36, 50, 157
Privileges . 15, 18, 19, 35, 37, 132
Processing options . 15, 25, 26, 43, 45-47, 49-51, 54, 61, 76-78, 81, 104, 129

Processing options file . 25, 26, 61, 129
Program Monitoring . 21, 28, 34, 103, 104, 107, 109, 117
QMF . 4, 7, 42, 53, 157
Size estimates . 25, 27, 29, 33
SQL Command

Command cost . 5, 8, 58, 59, 62-64, 88, 89, 135, 204-206, 208, 209, 211
Dependent query . 134
Execution detail . 5, 90, 92, 204-206, 208-210
Execution method 9, 15, 21, 39, 62, 63, 66, 92, 117, 135, 139, 147, 176, 189, 207
Execution structure . 5, 87, 91, 204-206, 208-210
Execution tree . 8, 9, 87

SQL Command Analysis Page 211

Join 9, 10, 12, 15, 63, 66, 67, 90-92, 96-98, 100, 137, 139, 140, 145, 147, 159, 160, 164, 168, 179,
180, 206, 207, 210

Merge scan join . 66, 90, 92, 96, 139, 180
Nested loop join . 66, 90, 92, 139, 160, 180, 206, 207
New JOIN table . 92, 96, 97, 139, 140, 147, 180, 204-210
Parent block . 10, 67, 87, 88, 91, 134, 140, 179, 210
Predicate 5, 9-12, 52, 53, 58, 67, 68, 71, 72, 91, 94, 95, 98, 100-102, 133, 134, 136, 137, 139, 141,

142, 149-165, 167-180, 185, 186, 204-206, 208-210
Reference details . 98, 100, 206-210
Sort . 9, 15, 63, 66, 90, 92, 96, 134, 139, 140, 147, 166, 169, 204-210
Subquery 6, 8-10, 15, 16, 58, 87, 88, 91, 134, 135, 140, 164, 167, 209, 210

SQL/CA
Batch facility . 37, 103, 104, 130
Functional description . 1, 7, 40, 46, 193
Glossary . 1, 5, 6, 12, 14, 16, 58, 74, 96, 100, 133, 156, 177
Installation . 25-29, 32, 49, 86, 107, 120, 129, 195
Messages . 1, 6, 14, 38, 47, 102, 109, 149, 176, 178, 199
Privileges . 15, 18, 19, 35, 37, 132
Size estimates . 25, 27, 29, 33
Text analysis . 8, 10, 11, 15, 55, 67, 102, 149

SQLCAX EXEC . 79, 81
Statistics

Automatic update . 34, 80, 103, 104, 112, 115, 116
Update . 4, 13, 17, 43, 47, 80, 109, 112, 126, 129, 181, 199
User exit . 21, 38, 113, 119

View . 5, 7, 9, 10, 16, 33, 63, 65, 67, 94, 117, 139, 140, 178, 200
Materialization . 9, 10, 63, 65, 94, 117, 139, 140, 178

View
References . 10

VSE . 7, 31, 85
Guest sharing . 7

