
Software
Product

Research

REXX/SQL
for
VM

User’s Guide

REXX/SQL for VM
Version 1

© Copyright Software Product Research 2000

“SQL/Monitoring Facility” is a product name owned
by Software Product Research

All other product names, mentioned in this manual, are trademarks owned by International
Business Machines Corporation, Armonk, NY.

TABLE OF CONTENTS

1 Installing REXX/SQL . 1
1.1 Software Prerequisites . 1
1.2 Pre-installation tasks . 1
1.3 Installing the CMS components . 1

1.3.1 Prerequisites . 1
1.3.2 Tape Installation . 1
1.3.3 Installation from other media . 1
1.3.4 Linking the REXX/SQL Modules . 1

1.4 Installing the SQL components . 2
1.4.1 Prerequisites . 2
1.4.2 Installing . 2
1.4.3 REXX/SQL DBspace requirements . 2

2 Using SQL in REXX . 3
3 Executing dynamic SQL statements . 4

3.1 Function input argument . 4
3.2 REXX/SQL processing . 4
3.4 Status output variables . 6
3.5 Using the dynamic FETCH interface . 7

4 Executing prepped SQL statements . 8
4.1 Prepping SQL statements . 8

4.1.1 Initiating package creation . 8
4.1.2 Adding statements to a package . 8
4.1.3 The REXXPACK Package creation utility . 9
4.1.4 Defining hostvariables . 10
4.1.5 Defining hostvariable data types . 11
4.1.6 Terminating package creation . 12

4.2 Executing prepped SQL statements . 13
4.3 Locate package function . 14
4.4 Using the static FETCH interface . 15
4.5 Using the static PUT interface . 16

5 Using REXX/SQL in a stored procedure . 17
5.1 Preparatory steps . 17

5.1.1 Stored Procedure Server considerations
. 17

5.1.2 Creating the stored procedure
. 17

5.2 Writing the REXX/SQL exec . 17
5.2.1 Create the SQL statements file . 17
5.2.2 Coding the EXEC . 17

5.3 Testing the EXEC . 19
5.4 Generating the procedure prolog . 19
5.5 Technical information . 19
5.6 TABINFO Stored Procedure Example . 20

6 Calling a stored procedure from REXX/SQL . 21
7 Issuing DB2/VM-VM operator commands . 22
8 Obtaining SQL help . 23

8.1 Using the REXX/SQL SQLHELP function . 23
8.2 Using the REXXSQLH procedure . 23

9 REXX/SQL samples . 25
9.1 Sample dynamic PROC . 25
9.2 Sample dynamic PROC using the fetch interface . 26
9.3 Sample static PROC . 27
9.4 Sample static PROC using the fetch interface . 28
9.5 Static PUT sample . 29

REXX/SQL for VM Page 1

1 Installing REXX/SQL

1.1 Software Prerequisites

Any DB2/VM and z/VM version.

1.2 Pre-installation tasks

A minidisk of 10 3390 cylinders or SFS directory should be available to receive the REXX/SQL
material.

1.3 Installing the CMS components

This installation step loads the REXX/SQL modules, execs, and other material from the distribution
medium to the disk or directory where the REXX/SQL has been installed (the REXX/SQL product
disk).

1.3.1 Prerequisites

1. Ensure that the VM userid performing the installation has write access to the REXX/SQL product
disk.

2. Ensure that you have access to the SQL production minidisk in any filemode.
3. If REXX/SQL has been received on tape, ensure that a tape or cartridge device has been

attached to the virtual machine with virtual address 181.

1.3.2 Tape Installation

1. Access the product disk for write with CMS filemode A.
2. Issue the command: TAPE LOAD * * A
3. When the TAPE LOAD command has completed, you do no longer need the distribution tape.

1.3.3 Installation from other media

If REXX/SQL has been received on a medium other than tape, please follow the installation
instructions present in the README file on the medium.

1.3.4 Linking the REXX/SQL Modules

1. With the product disk still accessed as "A" enter REXSQLPI at the CMS prompt.
2. On the installation option screen, enter Y on the line CMS Installation (Y/N).
3. The REXX/SQL modules are now linked on the product disk.

REXX/SQL for VM Page 2

1.4 Installing the SQL components

SQL installation must be performed in each database where the REXX/SQL facility will be used.
The target database must be a DB2/VM database.

1.4.1 Prerequisites

1. You should have write access to the REXX/SQL product disk in filemode A.
2. You should have read access to the SQL production minidisk in any filemode.
3. A DBspace is needed to create the REXXSQL_PACKAGES table, which will be used when

prepped SQL is performed using REXX/SQL.

1.4.2 Installing

 1. Type REXSQLPI at the CMS prompt.
 2. On the installation option screen, enter Y on the line SQL Installation (Y/N).
 3. On the next panel, specify the name of the database for installation and the password of user

SQLDBA.
4. The REXX/SQL packages are loaded in the database using a SQLDBSU RELOAD PACKAGE

command under the SQLDBA userid.
5. If initial installation is being done in the database, the REXX/SQL control table will be created.

At this time, the corresponding SQLDBSU command stream will be XEDITed. Specify the
storage pool where the DBspace should be created and the NPAGES parameter.

6. The previous panel is shown again, to allow for installation in another database. Press PF3 to
terminate the installation procedure.

1.4.3 REXX/SQL DBspace requirements

The REXXSQL_PACKAGES table has one row for each prepped SQL statement. The length of
these rows depend on the length of the SQL statement itself and on the number and length of the
host variables (if any) used by the statement.

REXX/SQL for VM Page 3

2 Using SQL in REXX
REXXSQL is implemented as an external REXX routine. It is called as follows:

“REXXSQL input_argument”

The REXXSQL input argument is a character string, a REXX variable or expression. It contains or refers
to the SQL statement to be executed. After submitting the statement to DB2, REXX/SQL returns the
completion status and the execution results to the invoking procedure as REXX variables or stems.

REXXSQL accepts all DML statements (SELECT, UPDATE, DELETE, INSERT), all DDL statements
(CREATE, DROP, GRANT etc) and the statements CONNECT, COMMIT and ROLLBACK.

REXX/SQL provides the following SQL interfaces:

- execute SQL statements in dynamic mode
- execute SQL statements in static (prepped) mode
- issue DB2/VM-VM operator commands
- obtain the DB2 help text for a given help topic

Dynamic REXX/SQL can be issued from the REXX/VM environment against any DB2 database that can
be connected using the private or the DRDA protocol.

Normally, static REXX/SQL can be issued against databases of the DB2/VM-VM family only. REXX/SQL
uses the “extended dynamic” facilities of DB2/VM to create and execute packages. This extended dynamic
mode is unknown to other DB2 platforms. Following technique allows to bypass this restriction:

- create the REXX/SQL under DB2/VM (eventually using the REXXPACK utility)
- transfer the created package to the non-DB2_VM server
- use REXXSQL EXECUTE statements to execute sections of the transferred package while connected

to the non-DB2_VM server

REXX/SQL for VM Page 4

3 Executing dynamic SQL statements
The dynamic REXX/SQL mode is the simplest interface to DB2. Input to the call is a character string or
a REXX expression that contains the SQL statement to be executed.

If a SELECT is submitted, the fetched columns are returned in REXX stems. For all statements, execution
status is returned as REXX variables.

A sample dynamic REXXSQL procedure is shown on page 25.

3.1 Function input argument

The only input argument on the REXXSQL function call is the SQL statement to be executed. The
argument is passed as a string or a REXX expression. The length of the input argument should not
exceed 8192 characters.

Following statements can be passed to REXXSQL:

- CONNECT [<userid> IDENTIFIED BY <password>] [TO <database>]’
- COMMIT
- COMMIT RELEASE
- ROLLBACK
- SELECT
- UPDATE
- INSERT
- DELETE
- any DDL statement

Example

user = “SQLBDA”
password = “....”
“REXXSQL CONNECT” user “IDENTIFIED BY” password
“REXXSQL SELECT * FROM SYSTEM.SYSCATALOG”
“REXXSQL COMMIT”

3.2 REXX/SQL processing

- The CONNECT, COMMIT and ROLLBACK statements are executed directly using a section within
the REXXSQL package.

- SQL statements other than SELECT are executed using an SQL EXECUTE IMMEDIATE.
- SELECT statements are executed using an SQL PREPARE / OPEN / FETCH / CLOSE sequence

on a dynamic cursor.
- If an SQLCODE occurs during processing, REXX/SQL will automatically issue a ROLLBACK

statement.
- There is no auto-commit function in REXX/SQL. COMMIT statements must be submitted explicitly

by the user.

REXX/SQL for VM Page 5

3.3 Output column stems

If a SELECT statement has been issued, all selected columns are returned in REXX column stems.
These stems have the same name as the corresponding column. The number of lines in the stem is
found in the REXX/SQL variable _NROWS (and in stem.0).

Example

“REXXSQL SELECT TNAME FROM SYSTEM.SYSCATALOG”

The above statement will setup _NROWS with the number of rows selected. The selected TNAME’s
are returned in TNAME.1, TNAME.2, ... thru TNAME.(_NROWS)

If expressions are coded in the SELECT column list, the name of the column stem will be EXPR_n,
where n is a sequence number assigned by REXXSQL for each expression in the SELECT list.

Example

“REXXSQL SELECT col1, (col2+col3), (col4+col5) FROM table”

Will setup the stems

- COL1.
- EXPR_1. (results of col2+col3)
- EXPR_2. (results of col4+col5)

The above stems have _NROWS lines. The stem lines are addressed as:
EXPR_1.1, EXPR_2.1, EXPR1.2, EXPR_2.2 and so on.

REXX/SQL for VM Page 6

3.4 Status output variables

Following REXX variables are available on return from the REXXSQL call:

_COST
When processing a SELECT, a searched UPDATE or a searched DELETE, _COST contains the
query cost estimate. (The same value is also in the variable SQLERRD4.)

_NROWS
With a zero SQLCODE, _NROWS contains the number of rows returned by a SELECT or the
number of rows processed by an INSERT, a DELETE or an UPDATE.

SQLCODE
The DB2 execution status. Zero if successful completion. The SQLCODEs are described in the
DB2/VM-VM manuals and in the DB2 tables SYSTEXT1 and SYSTEXT2. The REXX/SQL
SQLHELP function can be used to extract the SYSTEXT2 rows for a given SQLCODE. The
SQLHELP interface is described on page 23.

SQLERRM
If a non-zero SQLCODE has been returned, SQLERRM may contain tokens that further describe
the error. REXX/SQL replaces the token separators (x’FF’) with blanks.

SQLERRD1
If a non-zero SQLCODE has been returned, SQLERRD1 contains the Relational Data System
(RDS) error code.

SQLERRD2
If a non-zero SQLCODE has been returned, SQLERRD1 contains the Database Storage System
(DBSS) error code.

SQLERRD3
If a zero SQLCODE is returned, SQLERRD3 contains the number of rows affected by INSERT,
UPDATE and DELETE. The same value is returned in the REXXSQL variable _NROWS, which
also returns the number of rows returned by a SELECT.

SQLERRD4
When processing a SELECT or a searched UPDATE or DELETE, SQLERRD4 contains the query
cost estimate. The same value is returned in the REXX/SQL variable _COST.

SQLERRD5
Number of dependent rows affected by a successful DELETE.

SQLNAMES.
This REXX stem contains the names of the columns returned by a SELECT.
SQLNAMES.0 contains the number of columns fetched.
SQLNAMES.1 to SQLNAMES(SQLNAMES.0) contain the table column names.

REXX/SQL for VM Page 7

3.5 Using the dynamic FETCH interface

A SELECT statement that returns a large number of rows may need considerable amounts of storage
for the column stems. To avoid storage problems, a FETCH interface has been designed to select one
table row at a time. The interface is opened with a REXXSQL OPEN call. Each REXXSQL FETCH call
transfers a single table row. A REXXSQL CLOSE' call terminates the fetch sequence.

Open the dynamic fetch

The fetch interface is opened with a “REXXSQL OPEN” statement_text, for example:

“REXXSQL OPEN SELECT TNAME,ROWCOUNT FROM SYSTEM.SYSCATALOG”

The open call does not transfer data. It does assign the output status variables, described on page
6. If needed, the variable _COST (the execution cost estimate) should be retrieved at this time. It
is no longer available once FETCH calls have been made.

Perform dynamic fetch

The “REXXSQL FETCH” call returns one row on the open cursor. The fetched row columns are
stored in column variables, not in column stems, as only one column is passed. The REXXSQL
variable _NROWS always has the value 1.

The fetch call also returns the output status variables, described on page 6. SQLCODE 100 will be
returned when all rows have been passed.

Close the dynamic fetch

A “REXXSQL CLOSE” call terminates the fetch sequence. A COMMIT call will implicitly close an
open fetch cursor.

An example of the dynamic fetch interface can be found on page 26.

Note

The dynamic fetch interface does not provide for multiple cursors that are open simultaneously.
(The static fetch cursor does allow it). However, while fetching a cursor, it is allowed to issue
statements that do not use dynamic fetch.

REXX/SQL for VM Page 8

1When our SQL/Monitoring Facility product has been installed, its AutoPrep facility is able to
automatically and transparently transform dynamic statements into static SQL.

2DB2 identifies package statements by means of package section numbers. REXX/SQL uses
a DB2 table to maintain the relationship between a statement_name and the section number assigned to
it by DB2. When executing a named statement, REXX/SQL retrieves the section number from the table
and executes that section.

4 Executing prepped SQL statements
While the dynamic interface is easy to use, it incurs the overhead of DB2 “prepare” processing.1 Since this
overhead is not trivial, SQL statements that are executed often can be prepped and executed in the ”static”
mode.

4.1 Prepping SQL statements

When a REXX procedure wants to execute SQL statements in static mode, it must create a DB2
package first. This package may contain multiple SQL statements (package sections). After the
package has been created, selected statements can be called from the package for execution. For an
example of REXXSQL prep, see page 27.

A package can be created

- within a REXX exec using the CREATE PACKAGE and PREPARE statements
- outside a REXX exec using the REXXPACK utility

4.1.1 Initiating package creation

Package creation is initiated using following statement:

“REXXSQL CREATE PACKAGE” [creator.]packagename

If “creator” is omitted, the currently connected DB2 userid becomes the creator.
If a package with the same name already exists, it will be replaced with the new package without
any warning.

4.1.2 Adding statements to a package

An SQL statement is added to a package using following statement:

“REXXSQL PREPARE statement_name FROM statement_text”

statement_name
Assigns a symbolic name to the added statement. This name will be used when requesting
execution of that particular package statement.2 The name is also used internally by
REXX/SQL as a SELECT cursor, if needed. Therefore, the statement name should not
exceed 18 characters and conform to the SQL naming conventions. It should be unique with
the new package.

statement_text
The text of the statement to be added to the package.

REXX/SQL for VM Page 9

4.1.3 The REXXPACK Package creation utility

As an alternative to the REXXSQL CREATE PACKAGE and REXXSQL PREPARE statements,
embedded in the REXX EXEC, the REXXPACK utility program can be used to create a package
independently of the EXEC that uses the package.

REXXPACK is invoked from the CMS prompt as follows:

REXXPACK creator.packagename

This will create the package “creator.packagename”.

Before invoking REXXPACK, the SQL statements to be stored in the package must be placed in
a CMS file named <packagename> SQL. This file may reside on any accessed minidisk.

- The SQL file contains all SQL statements to be added. The statement text is written in free
format.

- A statement_name must precede the statement text. A : sign must be used to terminate the
statement_name. The statement_name should be identical to the name used on the REXXSQL
EXECUTE statement when executing the package.

- An asterisk in column 1 denotes a comment line.

- The DB2 userid executing REXXPACK must have the privilege to create the package.

- A CONNECT to the target database must have been performed (using SQLINIT for instance)
before invoking REXXPACK.

REXX/SQL for VM Page 10

Example

The CMS file TABINFO SQL contains the following:

*
* Get number of rows in a table
*
GET_ROWCOUNT:
SELECT ROWCOUNT FROM SYSTEM.SYSCATALOG

WHERE TNAME = :VARCHAR
*
* Get number of indexes defined on a table
*
GET_INDEXCOUNT:
SELECT COUNT(*) FROM SYSTEM.SYSINDEXES

WHERE TNAME = :VARCHAR

The command REXXPACK SQLDBA.TABINFO will store the above SQL statements in the
package SQLDBA.TABINFO.

These statements are executed subsequently using the commands:

REXXSQL EXECUTE GET_ROWCOUNT IN SQLDBA.TABINFO USING tablename
REXXSQL EXECUTE GET_INDEXCOUNT IN SQLDBA.TABINFO USING tablename

REXX/SQL for VM Page 11

4.1.4 Defining hostvariables

If the prepped statement contains variables, the following applies:

- REXX/SQL determines the data type and length for the SELECT output hostvariables
automatically, using SQL DESCRIBE. The user needs not to be concerned about this.

- The user must specify the input variables for INSERT and UPDATE statements and the
variables occurring in WHERE predicates.

- These input variables can be passed either as a parameter marker or as a hostvariable.

- A parameter marker is designated by a question mark, for example:
INSERT INTO <table> VALUES(?, ?)

- A hostvariable definition starts with a semicolon, followed by the data type and length of

the hostvariable, for example:
INSERT INTO <table> VALUES (:INTEGER , :CHAR(8)).
(For a list of allowed data types, see page 11.)

- Since parameter markers (?) do not specify the format of the hostvariable at prep time, an
implicit definition will take place during execution, depending on the contents of the variables
at run-time. REXX/SQL will make the following assumptions:

- Data enclosed in quotes are submitted with the CHARACTER data type and the actual
length of the character string.

- Numerical data without a decimal point are passed as INTEGERs.
- Numerical data containing a decimal point are submitted as DECIMAL, with the precision

and the scale of the actual value.

- Best DB2 performance is achieved when the data type and length of each hostvariable is known
at prep time. Therefore, parameter markers should be used with caution.

REXX/SQL for VM Page 12

4.1.5 Defining hostvariable data types

Hostvariables in the statement text should be defined with one of the following data types:

:INTeger
At execution time, REXX/SQL will present the corresponding input value to DB2 as a 4-byte
integer value.

:SmallINT
At execution time, REXX/SQL will present the corresponding input value to DB2 as a 2-byte
small integer value.

:CHARacter (length)
At execution time, REXX/SQL will present the corresponding input value to DB2 in a character
type field of the specified length. If the input is shorter than “length”, right padding with blanks
will be done.

:VARCHAR [(length)]
At execution time, REXX/SQL will present the corresponding input value to DB2 in a varchar
type field. The specified length indicates the maximum length. At execution, the effective length
of the input string will be passed to DB2. If no maximum length is specified, a default of 254 is
assumed.

:DECimal (precision, scale)
At execution time, REXX/SQL will present the corresponding input value to DB2 as a decimal
field with the specified precision and scale. If the input value has different precision or scale, the
value will be adjusted before being passed to DB2. For example: if the hostvar has been defined
as DEC(5,2), an input value of 15 will be submitted as 015.00.

:DATE
At execution time, REXX/SQL will present the input value in a 10-byte character field.

:TIME
At execution time, REXX/SQL will present the input value in an 8-byte character field.

:TIMESTAMP
At execution time, REXX/SQL will present the input value in an 26-byte character field.

Notes

- The upper-case characters in the above data type definitions represent an abbreviation of the
keyword. For example, :INTEGER and :INT are equivalent specifications.

- Any number of blanks may appear between the data type and the parentheses that enclose the
length specification.

- Hostvariables following a LIKE clause should be defined as VARCHAR, not as CHAR. This is
a DB2 requirement. The restriction does not apply to parameter markers.

- Floating point columns should be assigned from decimal hostvariables.

REXX/SQL for VM Page 13

4.1.6 Terminating package creation

When all statements have been added to the package, a REXXSQL COMMIT must be issued to
actually create the package. This is a DB2/VM requirement.

When the package has been created, only its creator has the EXECUTE authority. GRANT
statements must be used to propagate the EXECUTE privilege to other users.

REXX/SQL for VM Page 14

4.2 Executing prepped SQL statements

REXX procedures may execute any statement in any package that was created using REXX/SQL,
provided the necessary EXECUTE privileges have been granted. Users of a prepped statement
must know the creator and name of the package and the REXXSQL statement_name of the SQL
statement they want to execute.

A statement that was prepped previously by means of a REXXSQL PREPARE call, is executed
using the following call:

“REXXSQL EXECUTE” statement_name “IN” [creator.] package [“USING” data_list]

statement_name
Specify the statement_name that was used at PREPARE time.

[creator.]package
Specify the package creator and name that was used in the REXXSQL CREATE PACKAGE
call. The creator name may be omitted, in which case it defaults to the DB2 userid currently
connected.

data_list
Provides values for each hostvariable or parameter marker in the prepared statement text.
- The data_list items must be specified in the same order as the hostvariables or parameter

markers occurring in the prepared statement.
- A character value must be enclosed in single (‘) or double (“) quotes.
- A blank is used as separator in a list of values.
- To assign a null value, code NULL (without quotes).

After execution, a number of status variables is available, as described on page 6.

If the executed statement is a SELECT, the selected columns are returned in REXX stems, as
described on page 5.

Example

If the UPD_CUSTNAME statement has been prepared as:
UPDATE CUSTOMERS SET CUSTNAME = :VARCHAR WHERE CUSTNO = :INTEGER

the following call will update the name of customer 100:
New_name = ‘...’
“REXXSQL EXECUTE UPD_CUSTNAME IN CUSTPACK USING New_name 100”

Note

- REXX programs can execute statements from different packages within the same LUW.
- For an example of static REXXSQL, see page 27.

REXX/SQL for VM Page 15

4.3 Locate package function

The “REXXSQL LOCATE [creator.]packagename” call can be used to determine whether a package
exists and to automatically generate it when it does not.

The call returns SQLCODE 0 if the package exists and SQLCODE 100 if it does not.

REXX/SQL for VM Page 16

4.4 Using the static FETCH interface

Like the dynamic interface, the static interface fetches single rows.

The static fetch interface is initiated by the following call:

“REXXSQL OPEN statement_name IN [creator.]package [USING data_list] [WITH RETURN]”

The WITH RETURN option should be used in REXX/SQL execs executing as a stored procedure. For
a description of WITH RETURN, refer to the DB2_VM SQL Reference manual.

Each table row is fetched using:

“REXXSQL FETCH statement_name IN [creator.]package”

After FETCH, a number of status variables is available, as described on page 6.
The selected columns are returned in REXX stems, as described on page 5.

To terminate the fetch sequence, issue:

“REXXSQL CLOSE statement_name IN [creator.]package”

statement_name
Specifies the statement_name that was used at PREPARE time.

[creator.]package
Specifies the package creator and name that was used in the REXXSQL CREATE PACKAGE call.
The creator name may be omitted, in which case it defaults to the DB2 userid currently connected.

data_list
Provides values for each hostvariable or parameter marker in the prepared statement text.
- The data_list items must be specified in the same order as the hostvariables or parameter

markers occurring in the prepared statement.
- A character value must be enclosed in single (‘) or double (“) quotes.
- A blank is used as separator in a list of values.

Since each fetch sequence is identified by a statement name (which corresponds to an open cursor),
multiple FETCH sequences on different cursors can be open concurrently.

An example of the static fetch interface can be found on page 28.

REXX/SQL for VM Page 17

4.5 Using the static PUT interface

Use the PUT interface for blocked INSERTs. When multiple rows must be inserted into the same table,
the PUT interface will provide better performance than the INSERT statement.

The PUT statement is prepared (following a CREATE PACKAGE) by the following call:

“REXXSQL PREPARE statement_name FROM statement_text”

where statement_text is an INSERT
- using parameter markers e.g. “INSERT INTO table VALUES (?,?,...)”
- using hostvariables e.g. “INSERT INTO table VALUES (:INT, :CHAR(8),...)”

The PUT interface is initiated by the following call:

“REXXSQL OPEN statement_name IN [creator.]package”

Each table row is inserted using:

“REXXSQL PUT statement_name IN [creator.]package USING data_list”

After PUT, a number of status variables is available, as described on page 6.

To terminate the PUT sequence, issue:

“REXXSQL CLOSE statement_name IN [creator.]package”

statement_name
Specifies the statement_name that was used at PREPARE time.

[creator.]package
Specifies the package creator and name that was used in the REXXSQL CREATE PACKAGE call.
The creator name may be omitted, in which case it defaults to the DB2 userid currently connected.

data_list
Provides the values for each hostvariable or parameter marker in the prepared statement text.
- The data_list items must be specified in the same order as the hostvariables or parameter

markers occurring in the prepared statement.
- A character value must be enclosed in single (‘) or double (“) quotes.
- A blank is used as separator in a list of values.
- To assign a null value, code NULL (without quotes).

An example of the PUT interface can be found on page 29.

REXX/SQL for VM Page 18

5 Using REXX/SQL in a stored procedure
DB2_VM does not support REXX as a stored procedure language. REXX/SQL provides the Procedure
Prolog facility to allow a REXX exec to function as a stored procedure.

5.1 Preparatory steps

5.1.1 Stored Procedure Server considerations

The procedure servers that run REXX/SQL execs should have a link to the REXXSQL product disk
and to the disk that contains the executed execs and the load modules created by REXXPP.

5.1.2 Creating the stored procedure

A REXX/SQL stored procedure should be created as follows:

CREATE PROCEDURE procedurename (procedure_parameters)
LANGUAGE ASSEMBLE,
SERVER GROUP xxx,
EXTERNAL,
PARAMETER STYLE GENERAL

(where “procedurename” equals the name of the REXX EXEC)

5.2 Writing the REXX/SQL exec

5.2.1 Create the SQL statements file

Code all SQL statements contained in the REXX exec into a CMS file with the name
<execname> SQL and submit the SQL file to the REXXPACK function, which is described on page
9. REXXPACK will generate a DB2/VM package with a name equal to the name of the REXX exec.

5.2.2 Coding the EXEC

Use the REXXSQL EXECUTE or the static REXXSQL OPEN, REXXSQL FETCH and REXXSQL
CLOSE commands to execute SQL statements in the package generated from the SQL file,
created above. Insert additional REXX processing where needed.

To return the processing results to the program that calls the stored procedure, issue the REXX
queue statement for each procedure parameter defined with the output attribute in the CREATE
PROCEDURE statement.

Alternatively, you may use the WITH RETURN option on the REXXSQL OPEN statement. This
allows the calling program to fetch rows using the cursor declared by the stored procedure. For
details about WITH RETURN processing, refer to the DB2_VM SQL Reference manual.

Restrictions

Due to DB2_VM imposed restrictions, following SQL statements cannot be used in a
REXX/SQL EXEC running as a stored procedure: CONNECT, COMMIT, ROLLBACK,
REXXSQL CREATE and REXXSQL LOCATE. All other SQL statements (including dynamic
SQL) are allowed.

REXX/SQL for VM Page 19

REXX/SQL for VM Page 20

5.3 Testing the EXEC

An interesting feature of REXX as a stored procedure language is the possibility to test the REXX exec
stand-alone, before invoking it from a procedure server.

However, since the exec stacks its return results, these result lines are presented to CMS when the
exec returns to CMS and “Unknown CM/CMS command” error messages will be issued. To prevent
this, a REXXRUN exec has been provided with REXX/SQL.

REXXTEST is invoked as follows:

REXXRUN name-of-exec-to-run arguments-for-the-exec

REXXRUN wil invoke the named exec with the specified parameters and display the results of all the
result lines that have been stacked.

5.4 Generating the procedure prolog

When DB2_VM calls a stored procedure in the procedure server, an executable load module (CMS
filetype MODULE) is called. A load module however does not exist for a REXX stored procedure.
Therefore, a load module must be generated before executing the exec in the procedure server.

To do this, issue following command from the CMS prompt:

REXXPP name-of-the-exec

REXXPP will build a small assembler source, assemble and link it. The resulting load module is
callable from a procedure server, provided that the latter has access to the minidisk containing the load
module.

5.5 Technical information

The load module produced by the REXXPP function, calls the REXX/SQL REXXPPM function.

REXXPPM performs the following operations:

- convert the input arguments from the format specified on the CREATE PROCEDURE into REXX
format, that is, into character strings

- call the users REXX exec with the character-string arguments

- for each procedure output argument, a result line is taken from the CMS console stack and
converted into the parameter format specified on the CREATE PROCEDURE

REXX/SQL for VM Page 21

5.6 TABINFO Stored Procedure Example

(1) The TABINFO procedure has been defined to DB2 as follows:

CREATE PROCEDURE TABINFO (IN CHAR(18), OUT INTEGER)
LANGUAGE ASSEMBLE,
SERVER GROUP xxx,
EXTERNAL,
PARAMETER STYLE GENERAL

(2) The CMS file TABINFO SQL contains the following SQL statements:

*
* Get number of rows in a table
*
GET_ROWCOUNT:
SELECT ROWCOUNT FROM SYSTEM.SYSCATALOG

WHERE TNAME = :VARCHAR
*
* Get number of indexes defined on a table
*
GET_INDEXCOUNT:
SELECT COUNT(*) FROM SYSTEM.SYSINDEXES

WHERE TNAME = :VARCHAR

(3) The command REXXPACK SQLDBA.TABINFO builds the SQLDBA.TABINFO package
containing the two SELECT statements mentioned above.

(4) The TABINFO EXEC accepts a tablename as argument, calls the GET_ROWCOUNT function
and returns the result as follows:

Arg Table
Table = strip(Table)
Quote = “‘”
“REXXSQL EXECUTE GET_ROWCOUNT IN SQLDBA.TABINFO USING” quote||Table||quote
If SQLCODE < 0 then do

Call REXXSQLM sqlcode sqlerrm
Exit

If rowcount.0 > 0 then
Queue rowcount.1 /* Return the result */

(5) The TABINFO exec can be tested using a REXXRUN TABINFO <tablename>

(6) The procedure prolog is generated with the command REXXPP TABINFO.

(7) The TABINFO procedure can now be invoked from a prepped program using the statement:

EXEC SQL CALL TABINFO (:tablename, :rowcount)

REXX/SQL for VM Page 22

6 Calling a stored procedure from REXX/SQL

A REXX/SQL exec calls a stored procedure using the REXXSQL CALL statement. The called procedure
may be written in REXX/SQL or any other language.

Syntax

REXXSQL CALL procedurename argument(1) argument(2) ... argument(n)

- The number of arguments specified on the CALL should correspond to the number of input arguments
defined for the procedure.

- Character arguments need not be enclosed in quotes, except when the argument contains one or more
blanks.

- The output arguments returned by the called procedure are available to the exec in the REXX variables
Result_1 to Result_n, where n corresponds to the number of output arguments returned by the CALL.

Example

Arg Customer_no
REXXSQL CALL CUSTINFO Customer_no
Cust_Name = Result_1
Cust_Address = Result_2
Cust_City = Result_3

The parameters of the CUSTINFO stored procedure are assumed to have been defined like:
(IN INTEGER, OUT CHAR(30), OUT CHAR(30), OUT CHAR(30))

REXX/SQL for VM Page 23

7 Issuing DB2/VM-VM operator commands
Issue a DB2 operator command as follows:

“REXXSQL DB2COM” command_text

Where command_text holds the operator command to be executed.

A REXXSQL CONNECT must be issued before the DB2COM call.

The output of the operator command is returned in the REXX stem _REPLY and the number of reply lines
is in the variable _NROWS. SQLCODE will be set if the command cannot be forwarded (because no
connect was done for example).

Example

“REXXSQL CONNECT” user “IDENTIFIED BY” password “TO” database
“REXXSQL DB2COM SHOW LOG”
do i = 1 to _NROWS

say strip (_REPLY.i)
end

Notes

- A DB2 agent structure is required to execute the operator command.
- The command is passed using an RDIIN type 155 / 170 mailbox.
- DB2/VM-VM does not allow to pass the FORCE or SHUTDOWN commands using an RDIIN.

ARI0064E will be returned if attempted.

REXX/SQL for VM Page 24

8 Obtaining SQL help

8.1 Using the REXX/SQL SQLHELP function

The REXX/SQL SQLHELP function returns the DB2 SYSTEXT2 rows for a given topic. The topic can
be an SQLCODE or any other topic that appears in SYSTEXT2.

The SQLHELP output is returned in the REXX stem _HELPTEXT and the number of help lines is in
the variable _NROWS.

A REXXSQL CONNECT must be issued before the SQLHELP call.

Example

“REXXSQL CONNECT” user “IDENTIFIED BY” password “TO” database
“REXXSQL SQLHELP” SQLCODE
do i = 1 to _NROWS

say HELPTEXT.i
end

8.2 Using the REXXSQLH procedure

As an alternative for the REXXSQL SQLHELP call, REXX/SQL provides the REXXSQLH EXEC.It
prints (using REXX SAY) following items:

- the SQLCODE passed
- the SQLERRM if passed
- the SQL helptext for the SQLCODE passed

The procedure is invoked using the REXX statement

CALL REXXSQLH SQLCODE [sqlerrm].

REXX/SQL for VM Page 25

REXX/SQL for VM Page 26

9 REXX/SQL samples

9.1 Sample dynamic PROC

/* List DB2 tables by rowcount */

arg db user password

/* Connect the target database. Exit if connect fails. */
“REXXSQL CONNECT” user “IDENTIFIED BY” password “TO” db
if sqlcode < 0 then exit 8

/* Prepare and execute a SELECT on SYSCATALOG. */
s = “SELECT CREATOR,TNAME,ROWCOUNT FROM SYSTEM.SYSCATALOG” ,

“WHERE ROWCOUNT >= 100 ORDER BY ROWCOUNT DESC”

“REXXSQL” s

/* Check for SQL errors. */
if SQLCODE <> 0 then signal SQL_error

/* Show the result stems CREATOR, TNAME and ROWCOUNT */
do i = 1 to _NROWS

tablename = strip(creator.i)”.”strip(tname.i)
say “Table” tablename “has” rowcount.i “rows”

end

/* Terminate */
“REXXSQL COMMIT"
exit

/* Show SQLCODE, SQLERRM and related help text */
SQL_error:
call REXXSQLH sqlcode sqlerrm
exit 8

REXX/SQL for VM Page 27

9.2 Sample dynamic PROC using the fetch interface

/* List DB2 tables by rowcount */

arg db user password nrows

/* Connect the target database. Exit if connect fails. */
“REXXSQL CONNECT” user “IDENTIFIED BY” password “TO” db
if sqlcode < 0 then exit 8

/* Prepare and execute a SELECT on SYSCATALOG. */
s = “SELECT CREATOR,TNAME,ROWCOUNT FROM SYSTEM.SYSCATALOG” ,

“WHERE ROWCOUNT >=” nrows “ORDER BY ROWCOUNT DESC”
“REXXSQL OPEN” s

/* Check for SQL errors. */
if SQLCODE <> 0 then signal SQL_error

/* Show the result stems CREATOR, TNAME and ROWCOUNT */
“REXXSQL FETCH”
do while sqlcode = 0

tablename = strip(creator)”.”strip(tname)
say “Table” tablename “has” rowcount “rows”
“REXXSQL FETCH”

end
if SQLCODE < 0 then signal SQL_error

/* Terminate */
“REXXSQL CLOSE"
“REXXSQL COMMIT"
exit

/* Show SQLCODE, SQLERRM and related help text */
SQL_error:
call REXXSQLH sqlcode sqlerrm
exit 8

REXX/SQL for VM Page 28

9.3 Sample static PROC

/* List DB2 tables by rowcount */

arg db user password

“REXXSQL CONNECT” user “IDENTIFIED BY” password “TO” db
if SQLCODE < 0 then exit 8

/* Check if package SAMPLE1 exists, create it if not */
“REXXSQL LOCATE PACKAGE SAMPLE1"
If SQLCODE = 100 then call Create_Package

/* Execute the prepped statement “get_rowcount” */
“REXXSQL EXECUTE GET_ROWCOUNT IN SAMPLE1 USING ‘%’ 100”
if SQLCODE <> 0 then exit sqlcode

/* Show results */
do i = 1 to _NROWS

tablename = strip(creator.i)”.”strip(tname.i)
say “Table” tablename “has” rowcount.i “rows”

end
“REXXSQL COMMIT"
exit

Create_Package:
“REXXSQL CREATE PACKAGE SAMPLE1"
if SQLCODE <> 0 then /* process error */
s = “SELECT CREATOR,TNAME,ROWCOUNT FROM SYSTEM.SYSCATALOG” ,

“WHERE TNAME LIKE :VARCHAR AND ROWCOUNT >= :INTEGER” ,
“ORDER BY ROWCOUNT DESC”

“REXXSQL PREPARE GET_ROWCOUNT FROM” s
if SQLCODE <> 0 then /* process error */
“REXXSQL COMMIT"
return

REXX/SQL for VM Page 29

9.4 Sample static PROC using the fetch interface

/* List DB2 tables by rowcount */

arg db user password

“REXXSQL CONNECT” user “IDENTIFIED BY” password “TO” db
if SQLCODE < 0 then exit 8

/* Check if package SAMPLE1 exists, create it if not */
“REXXSQL LOCATE PACKAGE SAMPLE1"
if SQLCODE = 100 then call Create_Package

“REXXSQL OPEN GET_ROWCOUNT IN SAMPLE1 USING ‘%’ 100"

/* Check for SQL errors. */
if SQLCODE <> 0 then signal SQL_error

/* Show the result stems CREATOR, TNAME and ROWCOUNT */
“REXXSQL FETCH GET_ROWCOUNT IN SAMPLE1”
do while SQLCODE = 0

tablename = strip(creator)”.”strip(tname)
say “Table” tablename “has” rowcount “rows”
“REXXSQL FETCH GET_ROWCOUNT IN SAMPLE1”

end
if SQLCODE < 0 then signal SQL_error
“REXXSQL CLOSE GET_ROWCOUNT IN SAMPLE1”
“REXXSQL COMMIT"
exit

Create_Package:
“REXXSQL CREATE PACKAGE SAMPLE1"
if SQLCODE <> 0 then /* process error */
s = “SELECT CREATOR,TNAME,ROWCOUNT FROM SYSTEM.SYSCATALOG” ,

“WHERE TNAME LIKE :VARCHAR AND ROWCOUNT >= :INTEGER” ,
“ORDER BY ROWCOUNT DESC”

“REXXSQL PREPARE GET_ROWCOUNT FROM” s
if SQLCODE <> 0 then /* process error */
“REXXSQL COMMIT"
return

REXX/SQL for VM Page 30

9.5 Static PUT sample

/* Using the PUT interface */

arg db user password

“REXXSQL CONNECT” user “IDENTIFIED BY” password “TO” db
if SQLCODE < 0 then exit 8

/* Check if package SAMPLE2 exists, create it if not */
“REXXSQL LOCATE PACKAGE SAMPLE2"
if sqlcode = 100 then call Create_Package

“REXXSQL OPEN INSERT_1 IN SAMPLE2"

/* Check for SQL errors. */
if SQLCODE <> 0 then signal SQL_error

/* Insert 100 rows into table TEST */
do i = 1 to 100 while sqlcode = 0

char_value = “‘DATA”i”’”
“REXXSQL PUT INSERT1 IN SAMPLE2 USING” i char_value

end
if SQLCODE < 0 then signal SQL_error
“REXXSQL CLOSE INSERT_1 IN SAMPLE2”
“REXXSQL COMMIT"
exit

Create_Package:
“REXXSQL CREATE PACKAGE SAMPLE2"
if SQLCODE <> 0 then /* process error */
insert_statement = ‘INSERT INTO TEST (C1,C2) VALUES (:INTEGER , :CHAR(8))’
“REXXSQL PREPARE INSERT_1 FROM” insert_statement
if SQLCODE <> 0 then /* process error */
“REXXSQL COMMIT"
return

